DEPARTMENT OF CHEMISTRY HONOURS

LIST OF STUDENTS: 04

- 1. ANKITA MOHANTA
- 2. SOUVICK MAL
- 3. SUMIT SIL
- 4. TITHI MONDAL

TITLE OF THE PROJECT :

Coordination compound (bonding and supramolecular chemistry) Adsorption Nuclear magnetic resonance spectroscopy

4, Polymer chemistry

DURATION WITH DATE :01.04.2023 to 26.06.2023

PROJECT WORK COMPLETION CERTIFICATE

CERTIFICATE

This is to certify that the project submitted by....Ankita Mohanta, B.Sc. Hons. Roll No. 2003/1000006 has been accomplished under my supervision as a part of curriculum in of the objective stated therein for the Semester-VI (under CBCS) Exam, for the present academic session.

Signature of Project Guide with date

Name	;	Dr. Bhola Nath Sanker
Designation	:	Associate Professor
Department	:	Chemistry
College	:	Suchkora Mahavidyalaya

CERTIFICATE

Colorfoof23 Signature of Project Guide with date

Name	: Sk. Saifuddon
Designation	: SACT-1
Department	: Chemistry
College	: Gushkora Mahavidyalaya

CERTIFICATE
This is to certify that the project submitted byRoll No. 2003/1000056 has been accomplished under my supervision as a part of curriculum in of the objective stated therein for the Semester-VI (under CBCS) Exam, for the present academic session.
Rohofofes Signature of Project Guide with date
Name : SK Saifuldin
Designation : SACT-1
Department : Chemistry
College : Gushkora Mahavidyalaya

-

REPORT OF THE FIELD WORK: (PDF OF THE REPORT OF THE STUDENT)

- **1. PDF OF ANKITA MOHANTA**
- 2. PDF OF SOUVICK MAL
- 3. PDF OF SUMIT SIL
- 4. PDF OF TITHI MONDAL

SAMPLE PHOTOGRAPH OF THE FIELD WORK:

- PERMISSION LETTER FOR FIELD WORK FROM COMPETENT AUTHORITY
- ACCORDING TO B.SC. HONS. SEM 6 (DSE-4) SYLLABUS OF BURDWAN UNIVERSITY.

<u>B. SC. 6th SEMESTER (HONOURS) EXAMINATION 2023(CBCS)</u>

UNIVERSIY OF BURD

*

Presentation

SOUVICK MAL

By

1 H

Sc. 6th Sem Chemistry Hons. Examination -202

• Name: SOUVICK M&L

• Registration No: 202001004821 of 2020-2021

• University Roll No: 200311000042

• Course Tittle: Dissertation Followed by Power Point Presentation

• Course Code: **DSE-4**

2

• Semester: VI

ADSORPTION

SOUVICK M&L

3

der the supervision

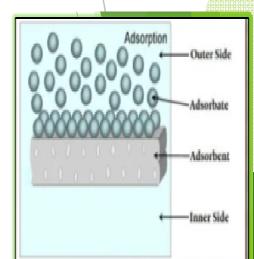
•

Dr. Bholanath Sarkar Dr. Pialee Roy Sk. Saifuddin Diptiman De

CONTENTS

Introduction

Adsorption, Adsorbent, Adsorbate

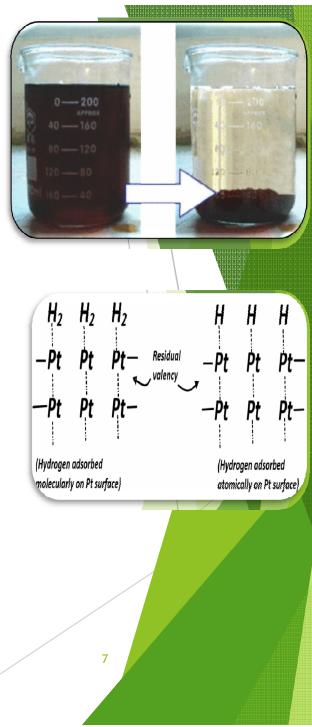

- Desorption, Absorption, Adsorption vs Absorption
- Heat of adsorption
- Adsorption in terms of gibbes free energy, Types of adsorption
- Physical adsorption & chemical adsorption, (+)ve & (-)ve adsorption
- Applications of Adsorption, Factor influencing Adsorption, Effect of temp & pressure Adsorption isober, Adsorption isotherm, Freundlich Adsorption isotherm its limitation Langmuir adsorption isotherm its derivation, Two important assumptions Langmuir volume and pressure, Dissociation of a single substance on a solid surface BET Adsorption isotherm, Adsorption on liquid & solid surface Gibbs Adsorption isotherm

5

Conclusion

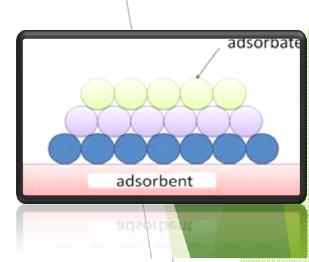
<u>Introduction:</u>

ce chemistry research is an interdisciplinary area on rontiers of physical chemistry, chemical physics, ial science and nanoscience. Residual unbalanced exist on the surface of a solid. As a result of these val forces, the surface of a solid has a tendency to t and retain molecules of other species with which it ught into contact. As these molecules remain only at rface, their concentration is more at the surface than bulk of the solid.

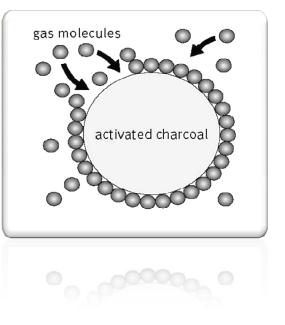


rm 'Adsorption' was introduced by Kayser in 1881. henomenon of higher concentration of any molecular species at the surf n the bulk of a solid is known as <u>Adsorption.</u>

Adsorption:

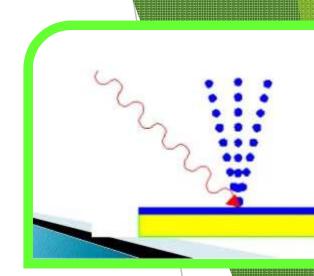

orption is to be carefully distinguished from rption. The latter term implies that a substance is ormly distributed throughout the body of a solid or uid. Thus, while water vapours are absorbed by drous calcium chloride.

adsorbed atoms or molecules can be held to the ce of a solid such as finely divided platinum l (Pt) by physical (Van der Waal's forces) or ical forces due to residual valance bonds.

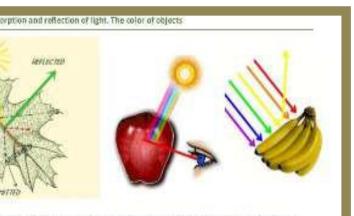


dsorbent & Adsorbate:

ne solid that takes up a gas, vapour or a solute om a solution, e.g., silica gel, charcoal, clay etc.

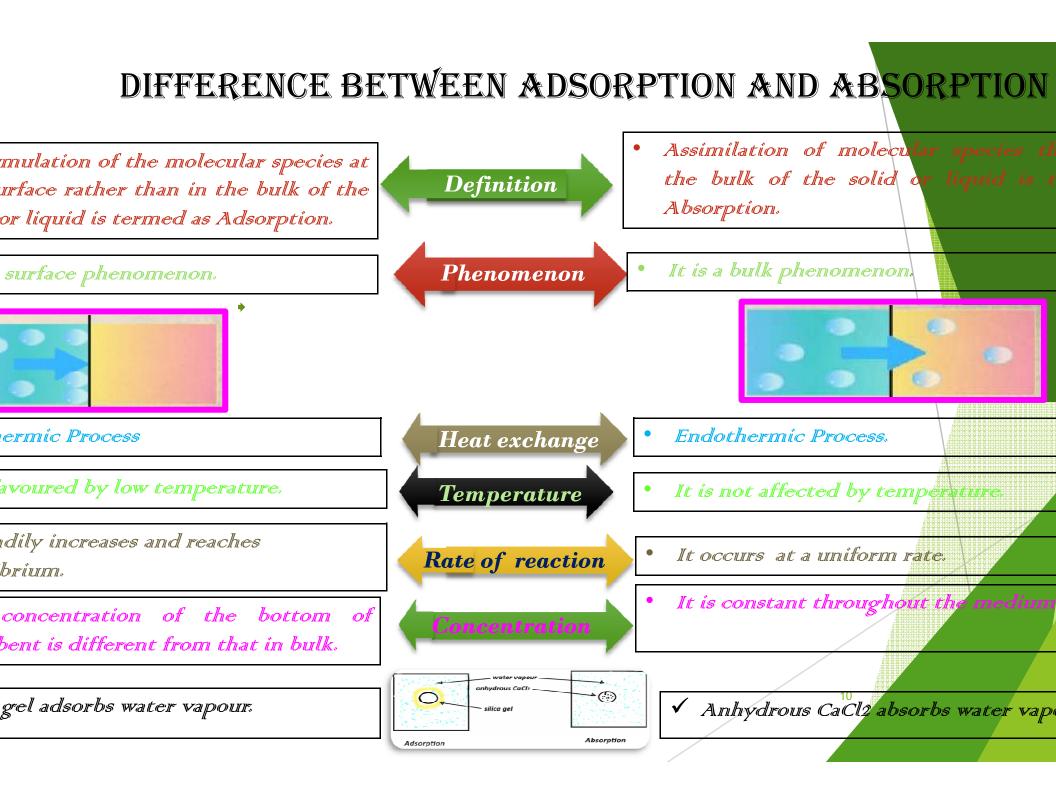

8

• The gas vapour or the solute, which is held surface of the solid, e.g., water vapou poisonous gases (NH₃, phosgene) etc.


esorption & Absorption:

The process of removal of adsorbed substances from the surface on which it is absorbed.

9


Desorption

pear to have colors since they are able to selectively I reflect certain wavelengths of visible light

Absorption

• When the molecules of a substance uniformly distributed through out the body another substance, the phenomenon is ca Absorption.

✓ Attractive interaction takes place.
 ✓ Energy released.
 ✓ Adsorption is an exothermic process.
 ✓ ΔH = (-) ve

The amount of heat evolved when 1 mole of an adsorbate ge adsorbed on the surface of an adsorbent is called Molar Heat Molar Enthalpy of Adsorption.

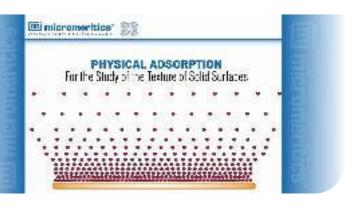
11

Adsorption in terms of Gibbs Helmholtz Equation:

dsorption _____ exothermic reaction. H = (-) ve S = (-) ve

ibbs- Helmholtz Equation

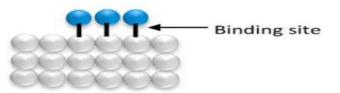
 $\geq \Delta G = \Delta H - T. \Delta S$ = (-) ve - T (-) ve


12

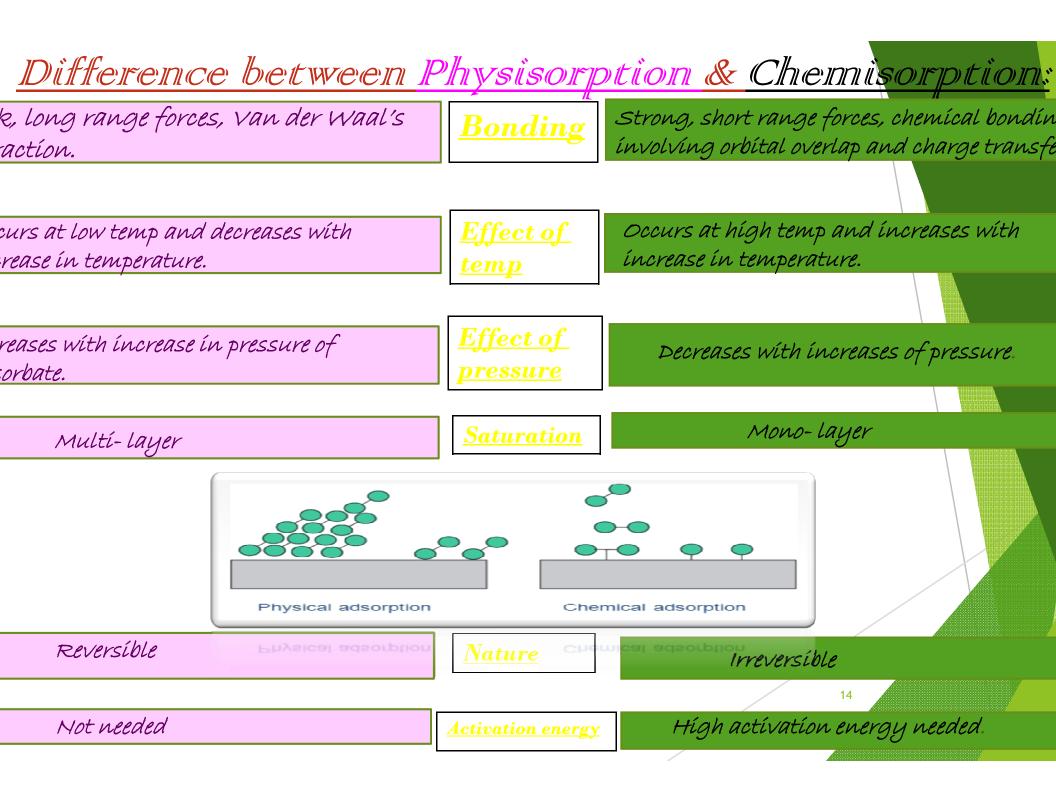
 $H > \Delta S$ $H = T. \Delta S$ G = 0*Tet adsorption is 0.*

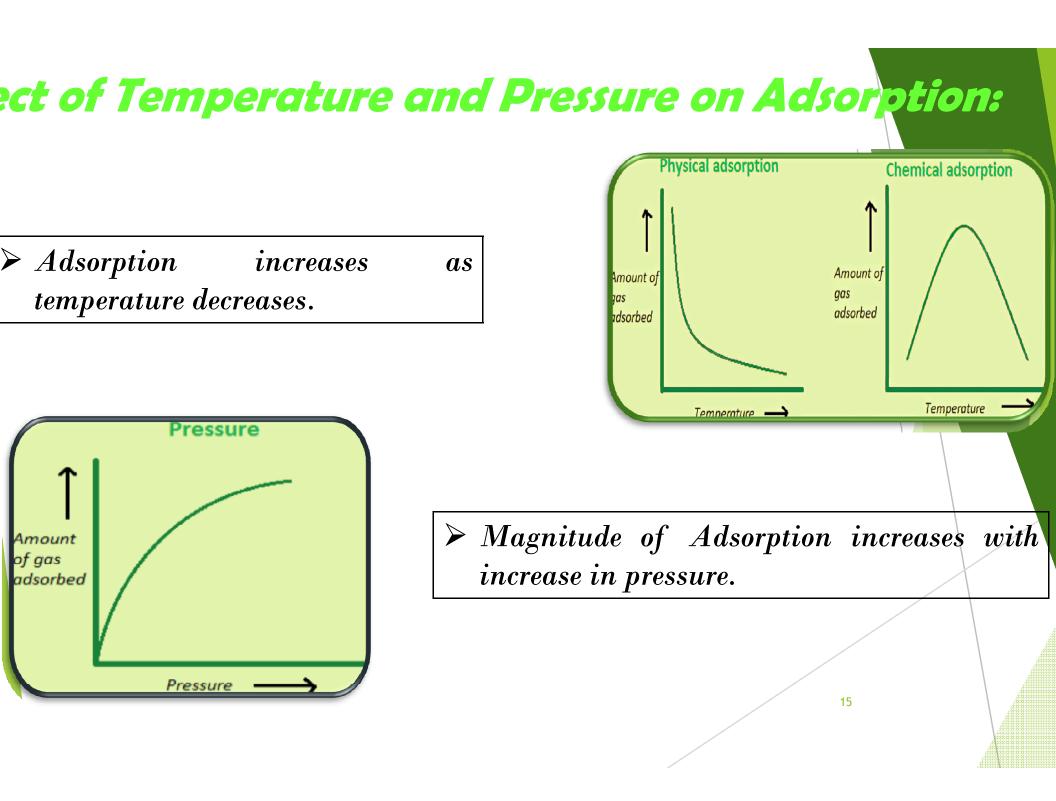
Types of Adsorption:

<u>Physical Adsorption or</u> Physisorption


Physical Adsorption occurs when he adsorbate gas molecules are eld by physical forces like Van er Waal's forces. Example: H_2 , O_2 on charcoal.

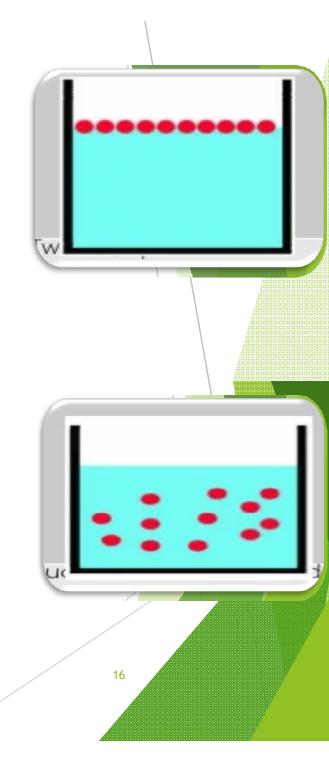
<u>Chemical Adsorption</u> or Chemisorption

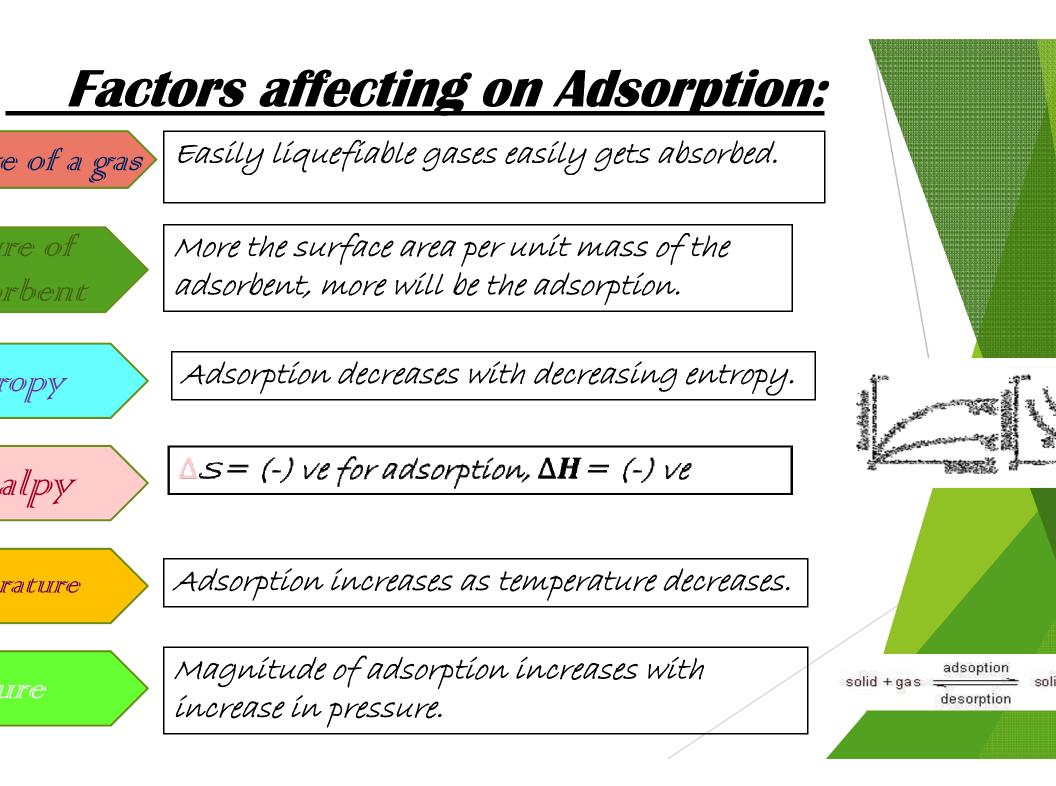

Chemical Adsorption occurs when adsorbate molecule is held on the adsorsurface by chemical forces as short cova chemical bonding occurs by the sharing electrons.


Example: Hydrogen is chemisorbed on N

The chemical bond is formed between adsorbate and adsorbent surface.

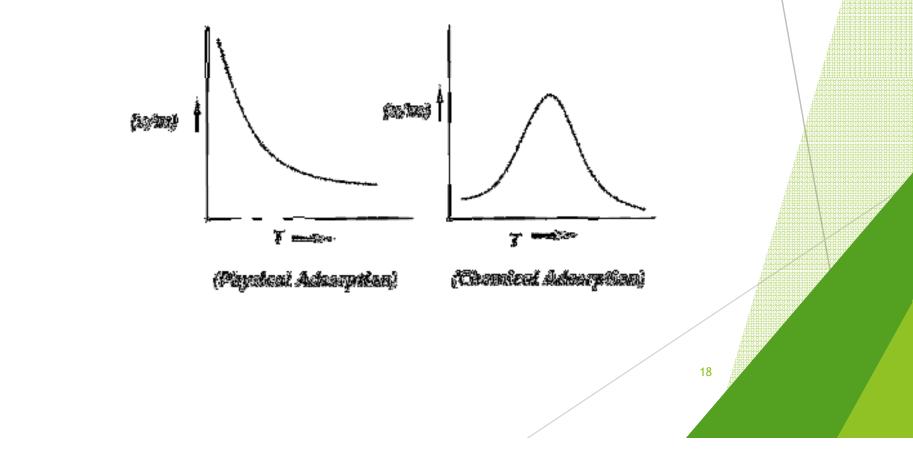
Chemical adsorption



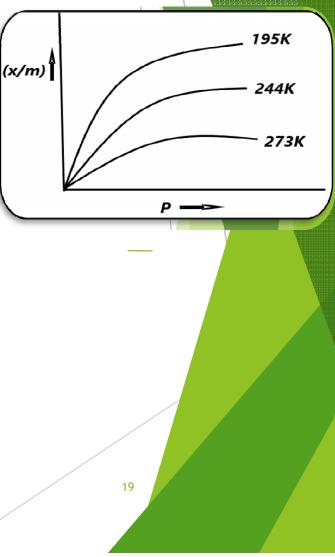

Positive & Negative Adsorption:

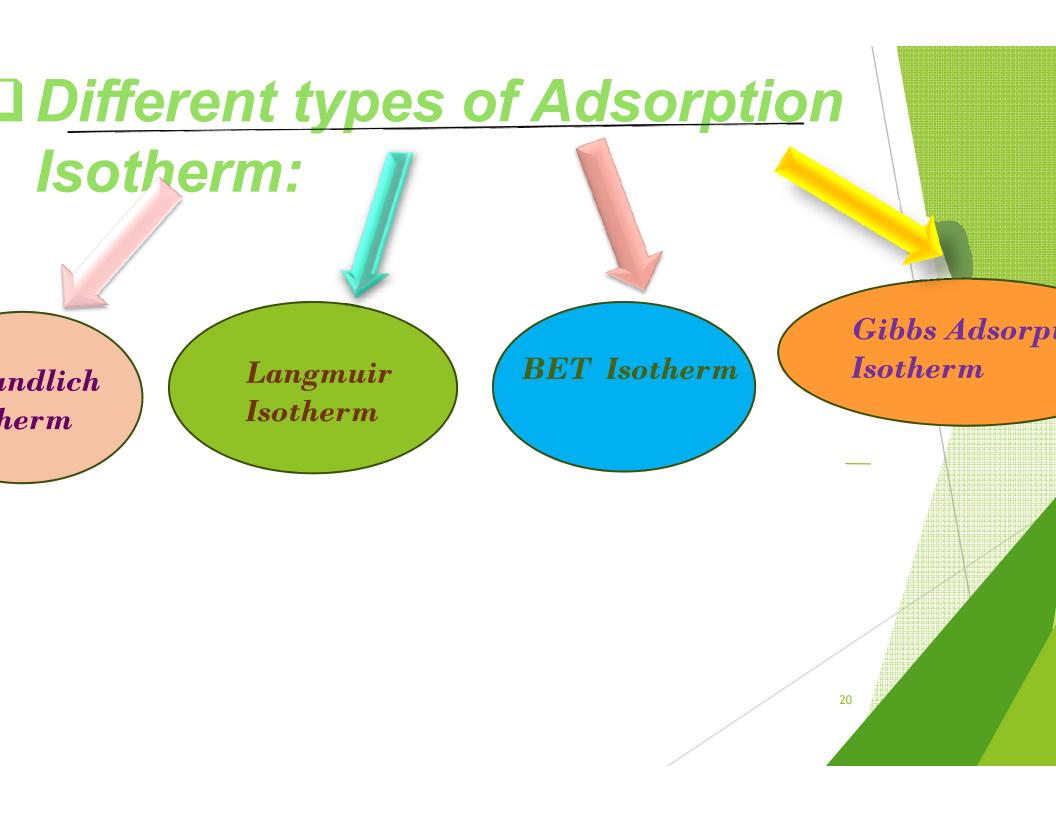
olid to Adsorption is the Adhesion of atoms, ions or molecules from a gas, liquid or dissolved a surface.

In adsorption, if the concentration of a substance in the interface is high, then it is called positive adsorption.


If it is less, then it is called negative adsorption.

Adsorption Isobar:


sorption Isobar is a graph between the amount adsorbed (x/m) and the temperatur the adsorbate at constant pressure.



dsorption Isothertm

rocess of adsorption is studied through graph known as Adsorption Is<mark>othern</mark>

- of vacancieLimited numbers s on the surface of the adsorbent.
- *fter saturation pressure P_S adsorption loesn't occur anymore.*
- *It high pressure a stage is reached when all he sites are occupied and further increase in ressure doesn't cause any difference in dsorption process.*
- *It high pressure, adsorption is independent of pressure.*

Freundlich Adsorption

Isotherm 1909, Dr. Herbert Freundlich gave this isotherm, which was an empirica ression that accounts for surface heterogeneity by multilayer adsorption, onential distribution of active sites of adsorbent and their energies towa orbate.

ic umptions:

urface roughness

Adsorbate – adsorbate interactions

nhomogeneity

21

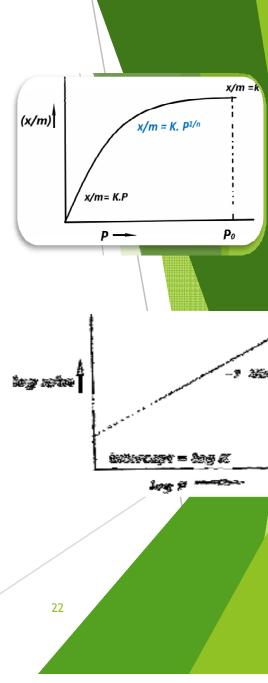
Derivatiion

is the amount of substance(adsorbate) adsorbed by "m" gm of ent at constant temperature, then according to Freundlich ---

 $x/m = k.P^{1/n}$ This equation is known as Freundlich tion isotherm, where

essure under which the adsorption equilibrium is established. Istant

l integer greater than one


ot of x/m vs P is of the following type---

he graph, we conclude that, at lower pressure, $x/m \alpha P$ or x/m =

ry high pressure, the adsorption becomes almost independent of re, i.e. $x/m = k.P^0$

e intermediate range of pressure , x/m is proportional to re raised to some fractional power between 1 to 0. $n = k \cdot P^{1/n}$

 $x/m) = \log(k) + 1/n \log(p)$

S OF FREUNDLICH ADSORPTION SOTHERM: Freundlich equation is purely empirical and has theoretical basis. The equation is valid only up to a certain pressure ar invalid at higher pressure. \checkmark The constants k & n vary with temperature. \checkmark Freundlich 's adsorption isotherm fails at high' concentration of the adsorbate.

Langmuir Adsorption Isotherm:

1916, Dr. Irving Langmuir derived an expression for the variation in the extent o sorption with pressure on the basis of following assumptions

Bassic assumptions

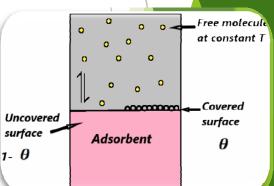
The surface is homogeneous

 All sites are equivalent
 Mono-layer adsorption only

 No interactions between adsorbate molecules on adjacent attempts of adsorption is constant and equivalent for all sites
 Adsorbate molecules have tendency to get adsorb and desorb for surface

Derivation

So consider a dynamic equilibrium between free molecules and those bed on the fraction of the solid surface. At the state of adsorption brium, in a chemisorption process, the rate of adsorption becomes equal orate of desorption. If at this equilibrium, (θ) is the fraction of the even of the adsorbent covered by the adsorbate molecule, then Rate of potion is equal to $(1 - \theta)$ as well as the number of molecule stricking per rea (μ) and rate of desorption becomes proportional to (θ). of adsorption α ($1 - \theta$). $\mu = \alpha$ ($1 - \theta$). $\mu \quad \alpha =$ ortionality constant

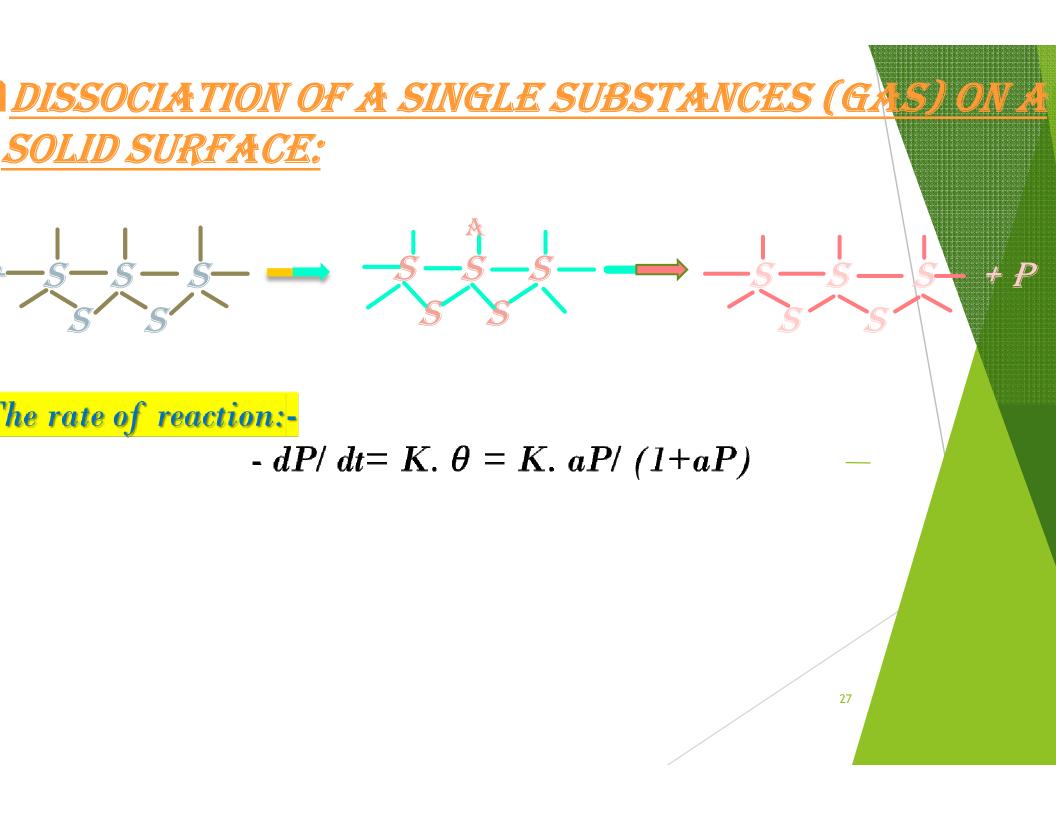

of desorption $\alpha \ \beta = \beta.\theta$ $\beta = \beta$

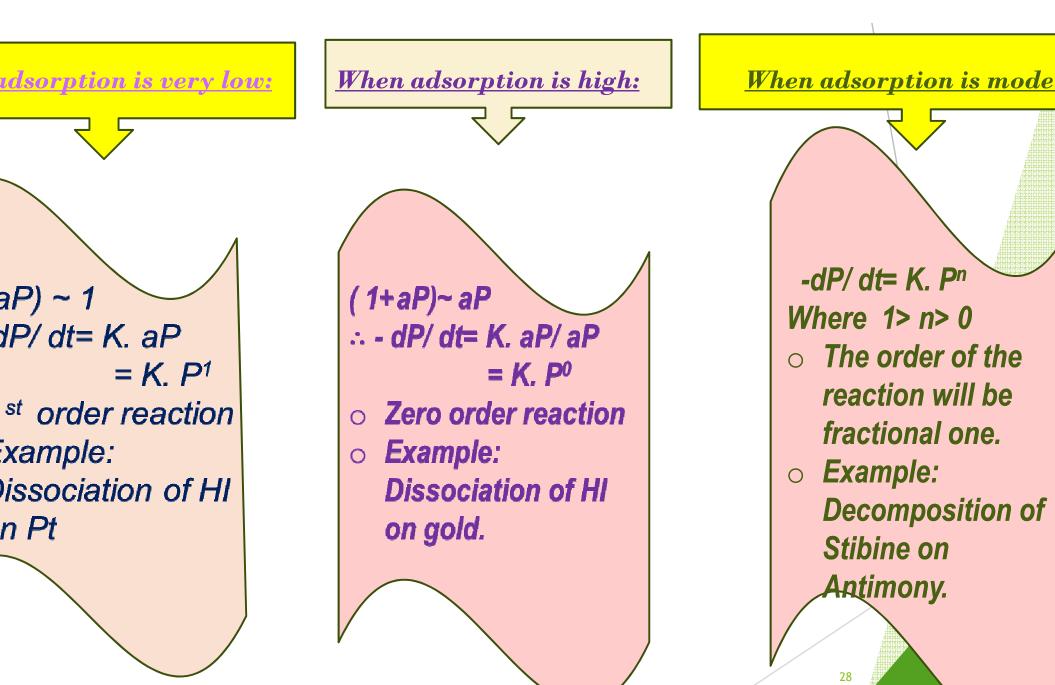
e equilibrium, rate of adsorption = rate of desorption $-\theta$). $\mu = \beta.\theta$ or; $\alpha\mu - \alpha\theta\mu = \beta\theta$ or, $\alpha\mu = \theta(\beta + \alpha\mu)$ or, $\theta = (\beta + \alpha\mu)$

(μ) is the number of molecules striking per unit area, it is directly rtional to pressure of the gaseous adsorbate .

 $\mu = k \cdot P$, then $\alpha \mu / (\beta + \alpha \mu) = \alpha k p / (\beta + \alpha k p) = (\alpha k / \beta) \cdot P / \alpha k P / \beta = \alpha P / 1 + \alpha P$

$$P = aP / 1 + aP$$
 Where $a = \alpha k / \beta = constant$




25

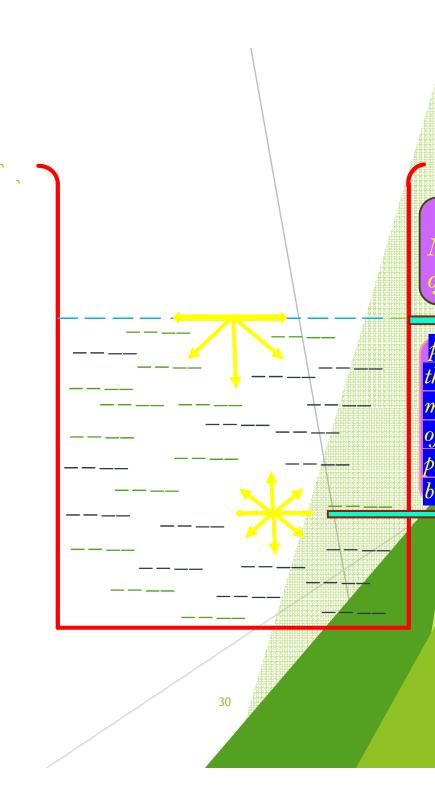
Langmuir Volume and Langmuir Pressure:

When maximum amount of gas adsorbed upon the solid surface to form a mono- layer is called Langmuir Volume. Langmuir Volume = v_{max} Similarly, Langmuir Pressure is the pressure at which one half of the Langmuir volume can be adsorbed Langmuir Pressure (P_L) = $v_{max}/2$

<u>BET Adsorption Isotherm :</u>

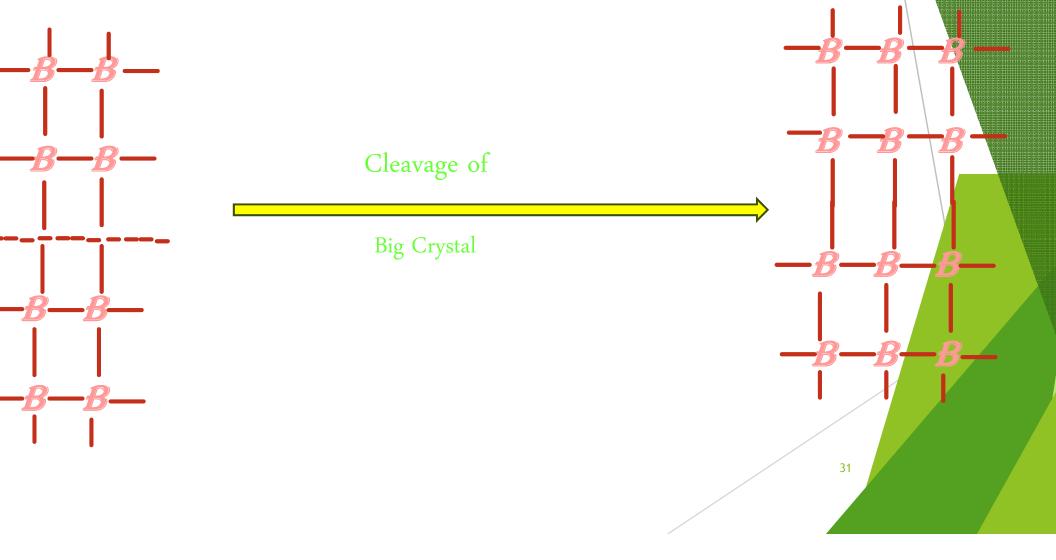
Brunauer, , Emmet and Teller extended the LANGMUIR approach by postulating cultimolecular adsorption i.e., the adsorption involves the formation of many molecular adsorption i.e., the surface rather than a single layer. Inverse on the surface rather than a single layer. The relation derived on this basis is expressed as- $P/v (P^0 - P) = 1/(v_m. C) + (C-1)/(v_m. C) \times P/P^0$

> This is often called BET Equation. Where,


v= volume of gas adsorbed under pressure P $P^0=$ Saturated vapour pressure at the same temperature. $_n=$ volume of gas adsorbed when the surface is covered with a Uni- molecular Layer. C= Constant for a given adsorbate, such that $c=e^{(E1-EL)/RT}$

Where, E_1 = Heat of adsorption in the first layer (always negative) and E_L = Heat of liquefication of the gas (always negative).

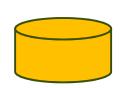
dsorption on Liquid


Substances which when added to lower its surface tension are called <u>ace Active Agents.</u> It also acts as rgents or soaps.

In when inorganic electrolytes such aCl, KCl, KBr etc. are added to H_2O ontact with air, then surface tension $_2O$ increases. This is due to increase oncentration of the solute in the bulk tion compare to that of H_2O/air face. Such substances are called ace Inactive Agents.

Adsorption on Solid Surface:

LEAVAGE OF A BIG CRYSTAL OF SOLID INTO SMALLER UNITS I<mark>S DONE TO</mark> ASE SURFACE AREA.


Gibbs Adsorption Isotherm:

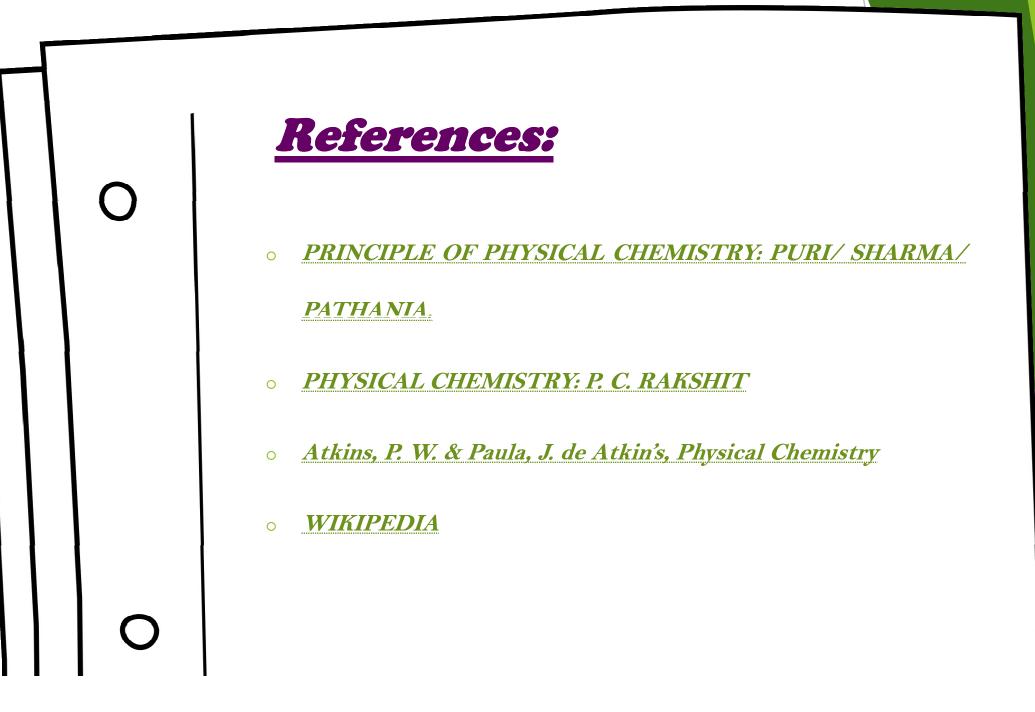
This equation represents an exact relationship between the rption and change in surface tension of a solvent due to prese of a solute. This equation was derived by ✓ <u>Willard Gibbs</u> (1878)

32

 \checkmark and afterwards independently by <u>J. J. Thomson</u>, 1888.

The total energy content within a two component system is- $G = n_1 \mu_1 + n_2 \mu_2 + \gamma S$ vation: Where, n_1 , n_2 are the number of moles of solvent and solute, μ_1 and μ_2 is their respective potential and γ = surface tension, S= area of the surface. The associated change in free energy dG becomes $dG = dn_1 \mu_1 + dn_2 \mu_2 + \gamma dS$ -------Since, G is an exact differential, then $dG = \mu_1 dn_1 + \mu_2 dn_2 + \gamma dS + n_1 d\mu_1 + n_2 d\mu_2 + S d\gamma$ ------(ii) Substracting (i) from (ii) we get- $n_1 d\mu_1 + n_2 d\mu_2 + S d\gamma = 0$ ------(iii) vithin the bulk of the solution, suppose there are n_2^0 moles of solute and n_1^0 moles of solvent present. Then wi bulk of the solution Gibbs- Duhem relation is valid. Then, $n_1^0 d\mu_1 + n_2^0 d\mu_2 = 0$ $\therefore d\mu_1 = -(n_2^0/n_1^0) d\mu_2$ Substituting this value in equation (iii) we get- $n_1(-n_2^0/n_1^0 \times d\mu_2) + n_2 d\mu_2 + S d\gamma = 0$ $d\mu_2 (n_2 - n_1 \times n_2^0 / n_1^0) + S d\gamma = 0$ $S d\gamma = (n_1 \times n_2^0 / n_1^0 - n_2) d\mu_2$.Now, $\mu_2 = \mu_2^0 + RT \ln a_2$ $d\mu_2 = RT dln a_2$ $S d\gamma = (n_1 \times n_2^0 / n_1^0 - n_2) RT dln a_2$ $d\nu/d\ln a_2 = -1/S RT (n_2 - n_1 \times n_2^0/n_1^0)$ quantity 1/S RT ($n_2 - n_1 \times n_2^0 / n_1^0$) is called Surface excess ($\Gamma 2$) $d\gamma/d\ln a_2 = -RT\Gamma^2$ $\gamma/(da_2/a_2) = -RT\Gamma 2$ $d\gamma/da_2 = -RT/a_2\Gamma^2$ 33 a dilute solution. $d\gamma/dc_2 = -RT/c_2\Gamma^2$

Applications of Adsorption:


○Gas masks • Chromatographic • Controlling humidity • Heterogeneous catalyst Forth flotation process Production of high vacuum • Curing diseases • Removal of coloring matter ○ Purification

34

Conclusion:

n this chapter, we know about adsorption, factors upon which it depends, its rence between physical and chemical adsorption the order of various chemi esses. Surface chemistry research is an interdisciplinary area on the frontier cical Chemistry, chemical physics, materials science, and nanoscience. Its imp ndustrial processes and technology has grown over the years and will contim y in future. Residual unbalanced forces exist on the surface of a solid. As a r hese residual forces, the surface of a solid has a tendency to attract and reta ecules of other species with which it is brought into contact. As these molec in only at the surface, their concentration is more at the surface than in the olid. Solids, when finely divided, have a large surface area and, therefore, sho property to a large extent. Colloids, on account of their extremely small ensions, process enormous surface area per unit mass and are, therefore, goo rbents. The examples are charcoal, silica gel, alumina gel, clay, etc.

35

Acknowledgement:

his dissertation would have been incomplete without support of certain people. I c<mark>onsider it as</mark> vilege to express gratitude & respect to all those who guided & inspired me in the completion oj project dissertation. First, I would like to successfully complete the project work.

press profound gratitude & sincere thanks to my supervisors Dr. Bholanath Sarkar, Diptiman G ifuddin & Dr. Pialee Roy, Department of Chemistry, Guskara Maha Vidyalaya, for their patie motivation & support.

so thankful to all faculty members and support staff and my dear friends of <u>C</u>hemistry Departr Iskara Maha Vidyalaya, for constant help. I am very grateful to my laptop hope it works after presentation.

but never the least, I also keep on record the moral & emotional support provided by my paren family throughout the period. Souvick Mal

Thank you

GUSHKARA MAHAVIDYALAYA

DEPARTMENT OF CHEMISTRY

B.Sc 6th SEMESTER Chemistry Hons. Examintion -2023

Ankita Mohanta

Reg. No.- 202001004782 University Roll No.- 200311000006

College Roll No.-87

Paper- Dissertation followed by Power Point Presentation (DSE4)

DISSERTATION TOPIC: COORDINATION COMPOUND (BONDING AND SUPRAMOLECULAR CHEMISTRY)

CONTENT

- □ Introduction to Coordination Compounds
- **Bonding Theories of Coordination Compounds**
 - Introduction
 - Valence Bond Theory (VBT)
 - Crystal Field Theory (CFT)
 - Jahn Teller Distortion
- □ Supramolecular Chemistry
 - Introduction to Supramolecular Chemistry
 - Relation between Supramolecular Chemistry and Coordination Chemistry
 - Self Assembly
 - Metal Organic Frameworks (MOFs)
 - Molecular Recognition
- □ Significance of Coordination Compounds in Supramolecular Chemistry
- Design of Coordination Compounds for Material Design
- □ Coordination Compounds as building blocks of Supramolecular Architectures
- □ Acknowledgment
- **References**

Introduction to Coordination Compounds

Coordination Compounds also known as complex compounds consist of a central metal ion or atom surrounded by Ligands.

Alfred Werner is considered the Father of Coordination Chemistry. His theory of Coordination Compounds earned Noble Prize in 1913.

> Examples : $[Cu(NH_3)_4]^{2+}$, $[Fe(CN)_6]^{4-}$

Bonding Theories of Coordination Compounds

nd

Valence Bond Theory (VBT) :-

- VBT describes the formation of Coordination Compounds through the overlapping of Atomic Orbitals between metal ion and ligands .
- VBT considers the hybridization of metal and ligand orbital.
- VBT provides insights on the stability, reactivity and electronic structure of Coordination Compounds.
- It explains geometry of Coordination Compounds based on their hybridization of the orbitals.

np

- There are two types of compounds classified by VBT -
 - \circ Inner orbital complex
 - Example: $[Fe(CN)_6]^{4-}$

ns

(n-1)d • Outer orbital complex Example: [Fe(OH2)₆]²⁺

Demerits of Valence Bond Theory

Valence Bond Theory fails to explain the conditions to outer and inner orbital complex.

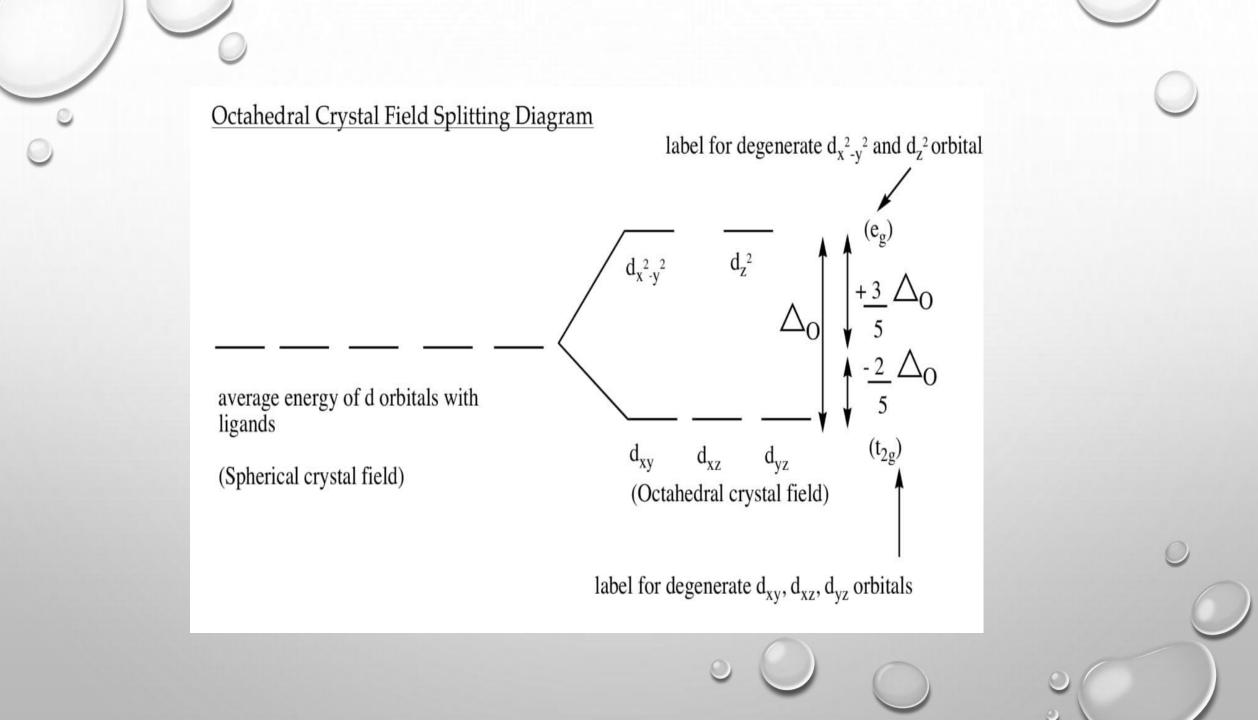
No explanation for colours of coordination compounds and their magnetic properties. There is no prediction given regarding the preference of geometry of the complex. VBT can't explain the reason behind the nonexistence of many complexes.

Crystal Field Theory

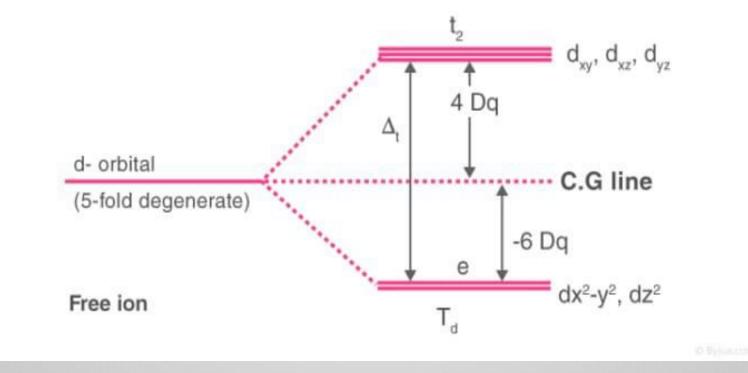
- Crystal Field Theory was first proposed by Bethe (in 1929).
- CFT considers the electrostatic interaction between the metal and the ligands to explain colour and magnetic properties of coordination compounds.

- There are some basic features of CFT
 - Ligands are considered as point like charge.
 - Wave mechanical identity of metal's atomic orbital has to be considered.
 - There will be no covalent interactions between metal and ligand.

- Crystal Field Splitting:
 - The electric field generated by the ligands cause the d-orbitals to split into two energy levels .
 - Lower energy orbitals
 - Higher energy orbitals

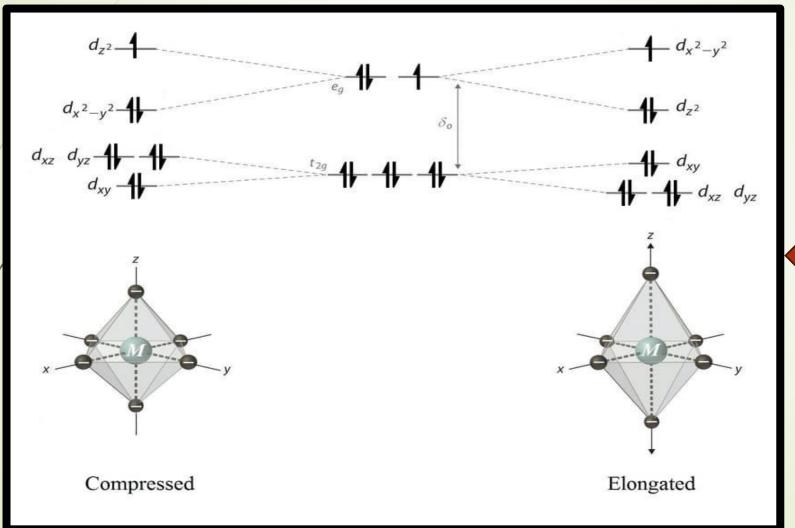

Crystal Field Splitting : The splitting of the d-orbitals mainly depend on the geometry of the coordination compounds.

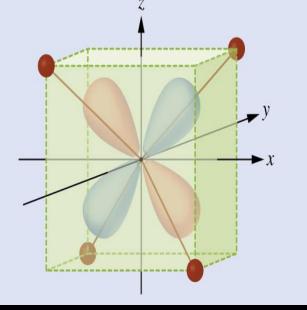
□ For Octahedral geometry \longrightarrow Lower energy orbitals will be t2g :- d_{xy} , d_{yz} , d_{xz}


Higher energy orbitals will be eg :- $d_x^2 - \frac{2}{y}$, d_z^2

□For Tetrahedral geometry \longrightarrow Higher energy orbitals will be t2 :- :- d_{xy} , d_{yz} , d_{xz}

Lower energy orbitals will be e $-d_{x-y}^{2}$, d_{z}^{2}


Tetrahedral Crystal Field Splitting Diagram


0


JAHN- TELLER DISTORTION

In the Octahedral system, if the two trans – ligands lying along the z-axis are compressed or elongated compared to the other four ligands lying in the xy plane, then we get the tetragonally distorted octahedrons.

Splitting of t_{2g} and e_g orbitals of an octahedral system due to Z-in (compressed) and Z-out (elongated).

Splitting of t_{2g} and e_g orbitals of an tetrahedral system due to Z-in (compressed) and Z-out (elongated).

Merits and Demerits of Crystal Field Theory

<u>Merits</u>

- Spectral properties of coordination compounds can be clearly explained by Crystal Field Theory.
- Crystal Field Theory can interpret the magnetic properties of Coordination Compounds.
- The distortions in the geometry of Coordination Compounds can be explained by CFT.
- CFT can explain the stereochemical preferences.

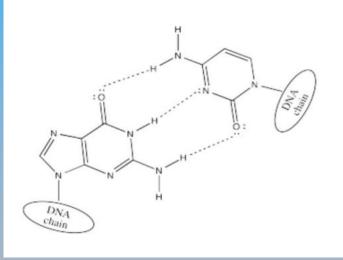
<u>Demerits</u>

- As ligands are considered as point like charge but metal's wave mechanical term is considered. Thus, self – contradictory.
- ✓ CFT assumes Coordination Compounds as purely electrostatic models which can never be strictly true as there are experimental supports for overlapping interaction like Nephelauxetic effect, reduction of interelectronic repulsion etc.
- This theory is unable to explain some sig--nificant order of spectrochemical series.
- This purely electrostatic model fails to explain the origin of the intense charge transfer band.

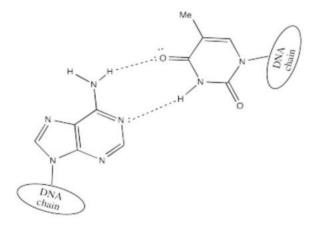
Supramolecular chemistry

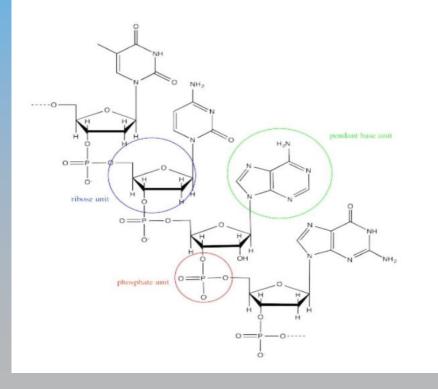
Introduction

Supramolecular chemistry also known also as "chemistry beyond molecule" deals with the study of molecular assemblies and the interactions that govern their formation, stability and function IN 1987 THE Noble Prize in chemistry was awarded jointly to Donald J Cram, Jean Marie Lehn and Charles J for Supramolecular chemistry

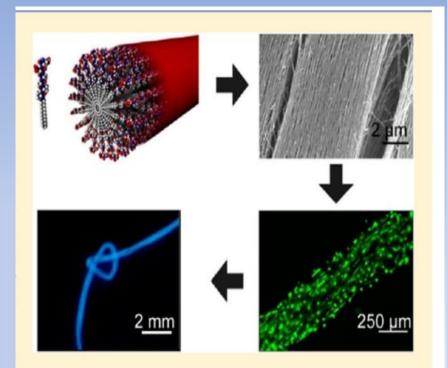

The assemblies are held together by weak noncovalent bond – Hydrogen bonding , Van Der Waals interaction and π - π stacking.

Supramolecular Chemistry techniques such as selfassembly and molecular recognition can be used to design and control the formation of supramolecular structures.

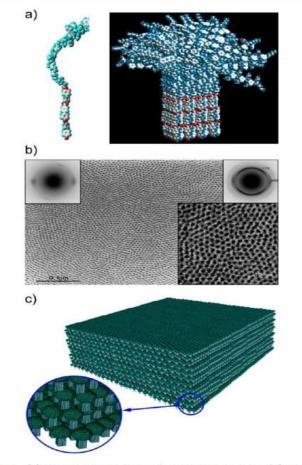

Example – The DNA structure

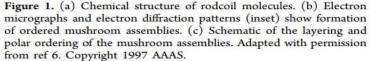

The structure of DNA

Cytosine hydrogen bonds preferentially with guanine.


supramolecular assembly through hydrogen bonding interactions that form between the bases. Thymine can hydrogen bond preferentially with adenine.

Relation between Supramolecular Chemistry and Coordination Compounds


- Coordination Compounds are used as building blocks for Supramolecular architectures.
- Coordination bond provides strong and directional interactions which helps to form molecular assemblies.
 - Coordination compounds serve as component to Supramolecular chemistry.



Self Assembly

The spontaneous organization of molecules under near thermodynamic equilibrium conditions into structurally welldefined and stable arrangements through non covalent bond

The molecular components need complementary properties such as specific surface , characteristics , surface charge , polarizability and surface functionalities to self assemble.

Polymeric self-assembly: Formation of extended polymeric structures through coordination bonds between metal centers and ligands

Types of Self-Assembly in Coordination Compounds

Supramolecular cages and capsules: Assembly of discrete three-dimensional structures that can encapsulate guest molecule

.Coordination-driven self-assembly: Formation of complex structures through coordination interactions between multiple metal centers and ligands. Examples of Self-Assembly in Coordination Compounds

Metal-organic

frameworks (MOFs):

Crystalline materials with a porous structure formed through self-assembly of metal ions or clusters and organic linkers

Supramolecular helicates:

Coordination complexes with helical structures formed through the self-assembly of metal ions and chiral ligands

Self-assembled

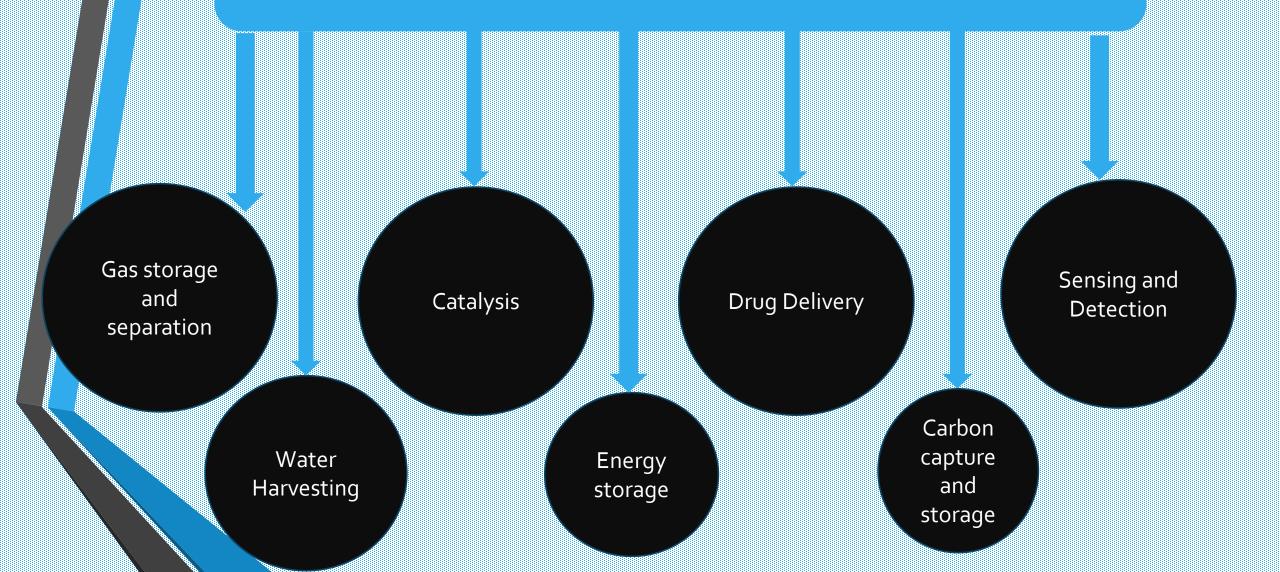
monolayers (SAMs):

Molecular assemblies formed on a surface through self-assembly of molecules with specific functional groups. Metal-Organic Frameworks (MOFs): Definition:-

Structural Features of MOFs:- Coordination Compounds as Building Blocks:-

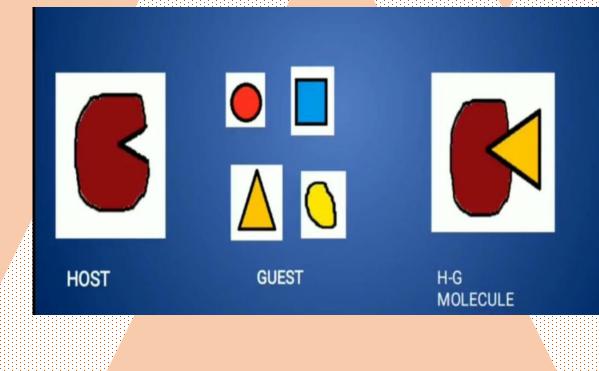
MOFs are a class of coordination compounds consisting of metal ions or clusters connected by organic ligands to form a porous three-dimensional framework . MOFs possess an exceptionally high surface area due to their porous nature, providing abundant space for guest molecule adsorption.

Nodes: Metal ions or clusters that act as the connecting points in the MOF structure. Struts: Organic ligands that link the nodes together, forming the framework. Pores: The void spaces within the MOF structure that allow for guest molecule storage and transport.

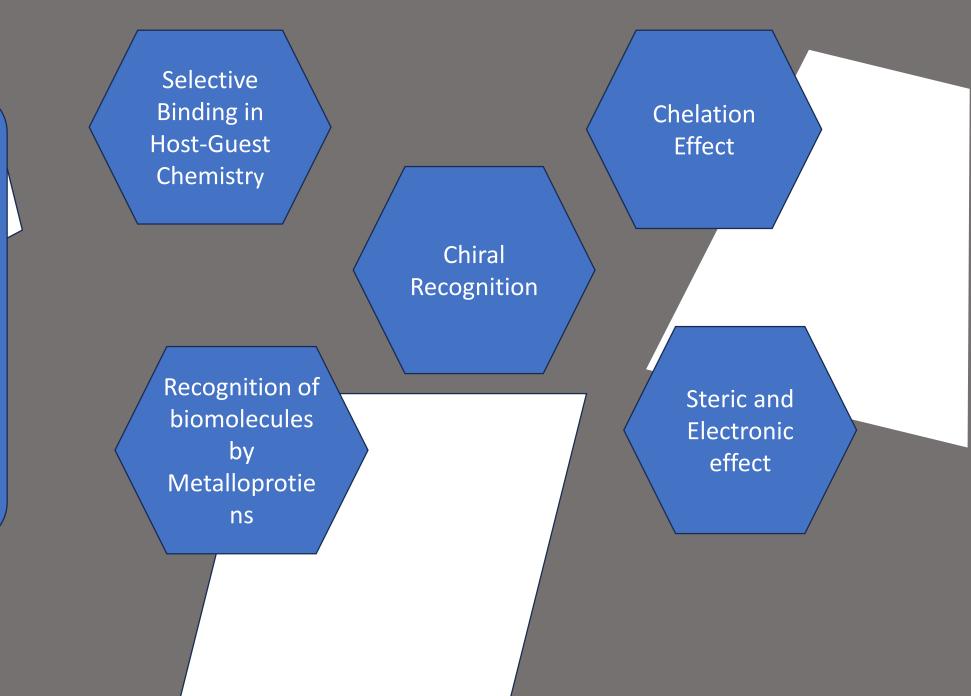

Coordination bonds: MOFs are constructed using coordination compounds as building blocks, combining the metal nodes and organic ligands in a controlled manner. The formation of coordination bonds between metal nodes and ligands is the primary driving force for MOF assembly. Versatile ligands: Various types of ligands can be employed, offering a wide range of structural possibilities and properties. The

choice of ligands plays a crucial

role in determining the structure


and properties of the MOF.

Applications of MOFs



Molecular Recognition

- Molecular recognition refers to the ability of molecules to selectively interact and bind with specific complementary molecules or ions.
- Host Guest Chemistry : Inclusion complexes , clathrates and cryptands are example of Host-Guest system.

Significance of Coordination Compounds on Molecular recognition

Significance of Coordination Chemistry in Supramolecul ar Chemistry The bonding of coordination comported as plays a crucial role in the formation and stability of supramolecular architectures. Supramolecular architectures refer to large-scale assemblies formed through non-covalent interactions between molecules or molecular components. These architectures can exhibit unique structural, electronic, and functional properties that are distinct from those of individual molecules. Here are the key significance of coordination bonding in supramolecular architectures

Structural stability Control of Assembly Hierarchical Assembly Diversity of Architecture S

Design of Coordination Compounds for Functional Materials

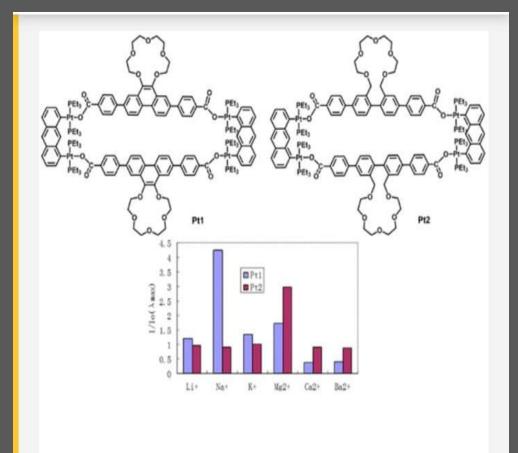
The design of coordination compounds plays a crucial role in the development of functional materials with tailored properties and applications. By carefully selecting ligands, metal centers, and coordination geometries, researchers can control the bonding interactions and molecular architecture of coordination compounds, leading to the desired functional properties. Here are some examples of how coordination compounds can be designed for specific functional materials:

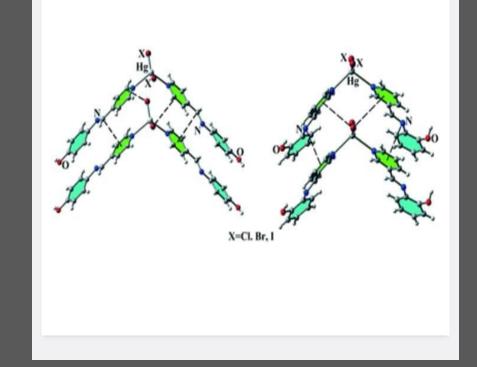
Luminescent Materials

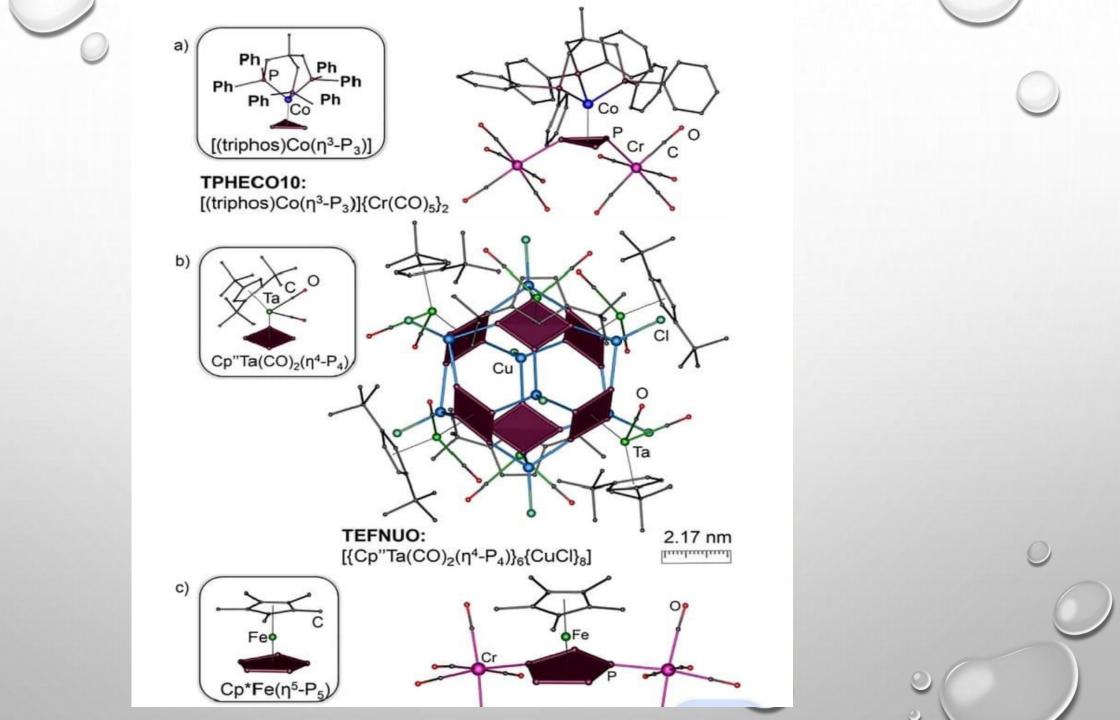
Magnetic Materials

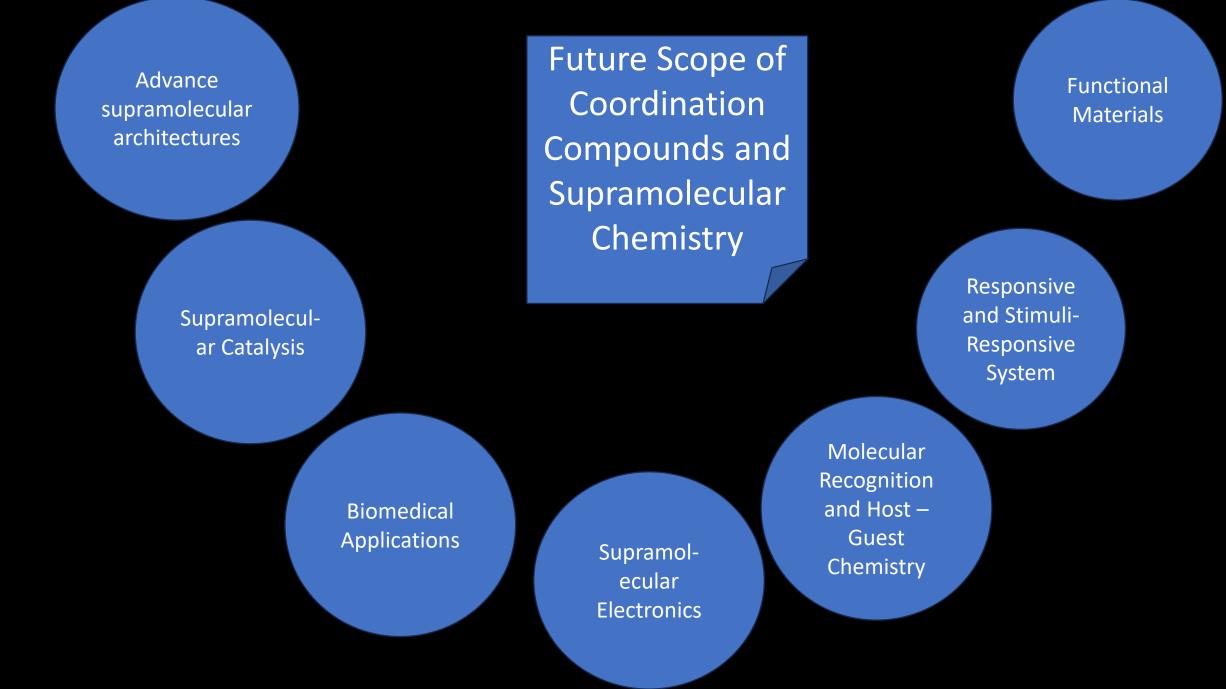
Catalytic Materials

Conducting Materials


Porous Materials


Coordination Compounds as Building Blocks in Supramolecular architectures


Synthesis and study of crown – ether appendel Tetraplatinum(II) Macrocyclic chemosensors for cation detection


Six Hg(II) coordination compounds containg 2-((pyridine-3ylmethylene)amino)phenol and 4-((pyiridin-4ylmethylene)amino)phenol

Organometallic polyphosrous complexes as diversified building blocks in Coordination compounds

CONCLUSION

Coordination compounds play a pivotal role in supramolecular chemistry as they serve as versatile building blocks for the construction of complex supramolecular architectures. The unique properties of coordination compounds, arising from the coordination of metal ions with ligands, make them highly attractive for creating functional supramolecular systems.

Bibliography

 Gary L. Miessler & Donald A Tarr. Inorganic Chemistry, Third Edition.
 Asim K Das & Mahua Das Fundamental Concepts of Inorganic Chemistry, Volume 4
 Jonathan W. Steed and Jerry L. Atwood Supramolecular Chemistry, Second Edition

https://en.m.wikipedia.org/wiki/Supramolecular_chemistry

ACKNOWLEDGMENT

This project would have been in complete without the support of certain people. I consider it as my privilege to express gratitude & respect to all those who guided & inspired me in The completion of this project dissertation. First. I would like to Thank the almighty for the blessings to me to successfully complete the project work. I express profound gratitude & sincere thanks to my Supervisors Dr. Bholanath Sarkar, Dr. Pialee Roy. Diptiman De and Sk Saifuddin. Department of Chemistry. Gushkara

Mahavidyalaya, for their patience, motivation and support.

I am also thankful to all faculty members and support staff of Chemistry Department. Gushkara Mahavidyalaya. forconstant help .Last , but never the least. I also keep on record the moral & emotional support provided by my parents, family and my friends through out the period.


THE UNIVERSITY OF BURDWAN

GUSHKARA MAHAVIDYALAYA

Dissertation on Nuclear Magnetic Resonance Spectroscopy

- <u>UNIVERSITY ROLL NO.</u> : 200311000051
- <u>REGISTRATION NO.</u> : 202001004831 OF 2020 TO 21
- <u>SEMESTER</u> : 6
- <u>COURSE CODE</u> : DSE-4

NMR SPECTROSCOPY

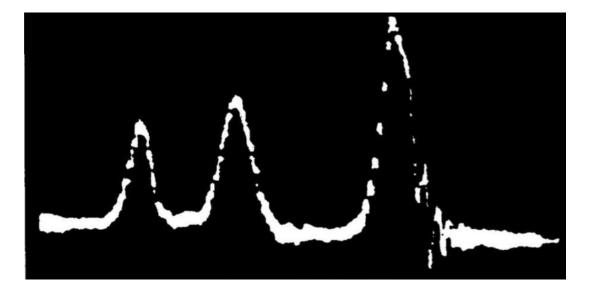
B.Sc 6th Semester Chemistry Hons Examination -2023 **DISSERTATION ON "NMR SPECTROSCOPY"** By Sumit Sil Roll No:- 200311000051 Registration No:- 202001004831 of 2020-21 Course code - DSE 4 Under the guidance of Dr. Bholanath Sarkar **Dr. Pialee Roy Diptiman De** Sk. Saifuddin The Department of Chemistry, Guskara Mahavidyalaya, Guskara

INDEX

- Introduction
- Types of Spectroscopy
- Historical Perspective
- Basic Theory
- Nuclear Spin
- Change in Spin State in the Presence of Magnetic Field
- Clasical Description of NMR
- Larmor Frequency
- Population Density
- Population Excess
- Concept of Chemical Shift
- Defination of Chemical Shift
- Refarance for ¹H-NMR Spectroscopy

- Factor Affecting Chemical Shift
- Anisotropic Effect
- Diamagnetic Anisotropy
- NMR Spectroscopy for EtOH (in low resolution)
- NMR Spectroscopy for EtOH (in high resolution)
- Spin-Spin Coupling(Splitting)
- NMR Instrumentation
- Application of NMR Spectroscopy
- Conclusion
- Reference
- Acknowledgement

INTRODUCTION


- Nuclear Magnetic Resonance (NMR) is a spectroscopy technique which is based on the absorption of electromagnetic radiation in the radio frequency region 4 to 900 MHz by nuclei of the atoms.
- Proton Nuclear magnetic resonance spectroscopy is one of the most powerful tools for elucidating the number of hydrogen or proton in the compound.
- It is used to study a wide variety of nuclei:
- ¹H
- ¹⁹F
- ¹³C
- ¹⁵N
- ³¹P

<u>TYPES OF</u> <u>SPECTROSCOPY</u>

- Absorption spectroscopy
- Electrochemical impedance spectroscopy:
- ESR Spectroscopy
- Emission spectroscopy
- Fluroscence spectroscopy
- Infrared spectroscopy
- Mossbauer spectroscopy
- Nuclear magnetic resonance spectroscopy
- Raman spectroscopy
- UV-visible spectroscopy

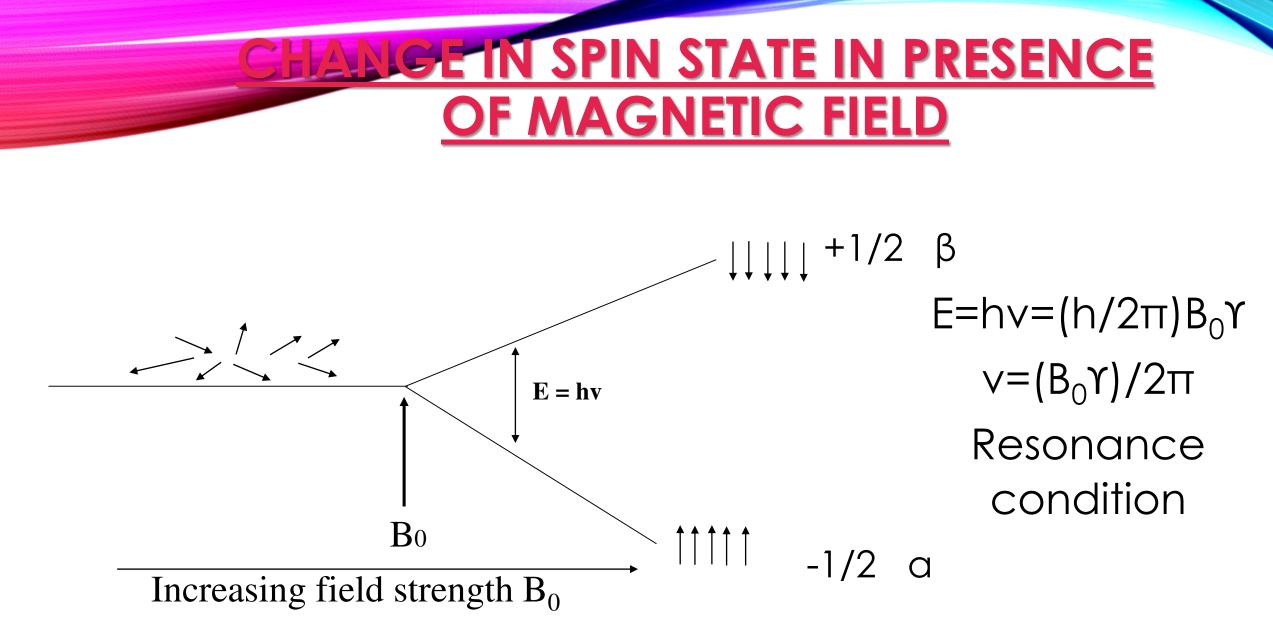
HISTORICAL PERSPECTIVE Discovery of NMR Phenomenon in 1945.

The first published "high resolution" NMR spectrum of ethanol at 30 MHz Purcell and Bloch – Nobel prize in Physics – 1952 for the discovery of NMR.

Richard Robert Ernst-Nobel prize in Chemistry-1991

BASIC THEORY

- NMR-Nuclear Magnetic Resonance
- Dealing with magnetic properties of atomic nuclei
- Atomic nucleus has mass and it spins on its own axis
- Due to the spin, it possesses angular momentum(P)
- Due to the charge and the spin it possesses magnetic momentum(μ)
- Only certain nuclei have non-zero magnetic moment. In others the "Net magnetic momentum" can be zero
- Only nuclei with non-zero magnetic moment are "magnetically active"
- Both (P) and (μ) are vector quantities and also quantized
- The ratio of magnetic momentum to angular momentum is called "Gyromagnetic ratio".
- It is very characteristic of a given nuclei. It is a constant for a given nucleus.
- Gyromagnetic ratio = $[\gamma] = (\mu)/(P)$


A SIMPLE WAY TO FIND OUT NUCLEAR SPIN-EVEN/ODD RULE

Example:

ATOMIC MASS	ATOMIC NUMBER	NUCLEAR SPIN	
EVEN	Even	ZERO	I=0, ¹² C ₆ , ¹⁶ O ₈ ,
Even	Odd	MULTIPLE OF 1	I=integer, ¹⁴ N ₇ (1), ¹⁰ B ₅ (3), ² H ₁ (1)
Odd	EVEN OR ODD	MULTIPLE OF 1/2	I=half integer,
			¹ H ₁ (1/2), ¹³ C ₆ (1/2), ¹⁵ N ₇ (1/2)

 $^{17}O_8(5/2), ^{33}S_{16}(3/2), ^{11}B_5(3/2)$

The energy gap between the spin states corresponds to radio frequency region

• EACH LEVEL HAS A DIFFERENT POPULATION (N), AND THE DIFFERENCE BETWEEN THE TWO IS RELATED TO THE ENERGY DIFFERENCE BY THE BOLTZMMAN DISTRIBUTION

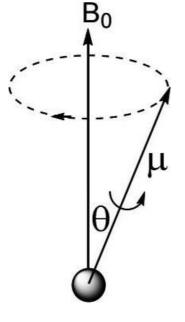
$$\frac{N_{upper}}{N_{lower}} = e^{-\Delta E/kT} = e^{-hv/kT}$$

h= 6.624×10^{-34} J.sec k= 1.380×10 J/K .molecule T= absolute temperature (K)

POPULATION EXCESS

Using equation, one can calculate that at 298 K(25°C), for an instrument operating at 60 MHz there are 1,000,009 nuclei in the lower (favored) spin state for every 1,000,000 that occupy the upper spin state.

This excess of 9 nuclei is called the population excess.


The spins in the excited state return back to ground state by (a) spin lattice relaxation and (b) spin-spin relaxation

$\mathbf{B}_{0}(\mathbf{T})$	ν	$\Delta E(J)$	N_{α}/N_{β}	T°C
	(MHz)			
2.35	100	6.7 x 10 ⁻²⁶	17 ppm	17
4.70	200	22.5 x 10 ⁻²⁶	57 ppm	17
7.0	300	33.5 x 10 ⁻²⁶	85 ppm	17
2.35	100	6.7 x 10 ⁻²⁶	28	-100
			13	+100

Higher the magnetic field strength – higher the sensitivity and resolution

Lower the temperature – higher the sensitivity

LARMOR FREQUENCY

Spinning nucleus

The interaction of magnetic field with nuclear magnetic moment induces the nuclear magnetic moment to preces about the applied magnetic field with certain frequency called Larmor frequency

Precessing spin about the applied magnetic field direction

 ω_0 – Larmor frequency

CLASICAL DESCRIPTION OF NMR

$v = (B_0 \Upsilon)/2\pi$

From the above equation one infers that all the hydrogen nuclei in a molecule, say ethanol should have the same resonance frequency, irrespective of its chemical nature, at a given magnetic field.

But this is not true. Hydrogens in different chemical environment give different resonance frequencies in the NMR.

DEFINATION OF CHEMICAL SHIFT

It is inconvenient to refer to proton frequency as 398.432 MHz

$$\delta \text{ (in Hz)} = v_{sample} - v_{reference} \text{ (Spectrometer dependent)} \\ \delta = \frac{(vsample - vreference) * 10^{6}}{spectrometer frequency}$$
(in ppm)

Chemical shift expressed in δ is a dimensionless quantity and also does not depend on the spectrometer frequency

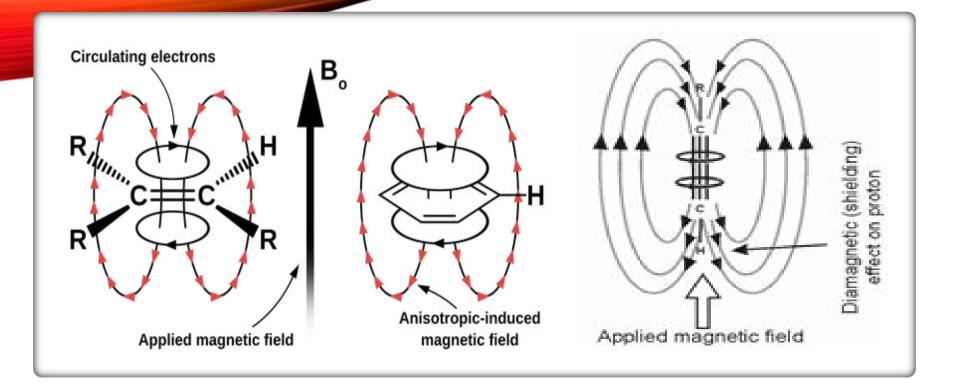
REFERENCE FOR ¹H-NMR SPECTROSCOPY

- Tetramethylsilane (TMS) is used as a reference
- The chemical shift of TMS is lower than most protons in organic molecules, so it is taken as zero
- All the protons in TMS are equivalent and hence only one signal for all the 12 protons – high signal intensity
- TMS is a liquid and miscible with most solvents
- It is also volatile and hence easy to remove
- It is inert and does not react with the sample

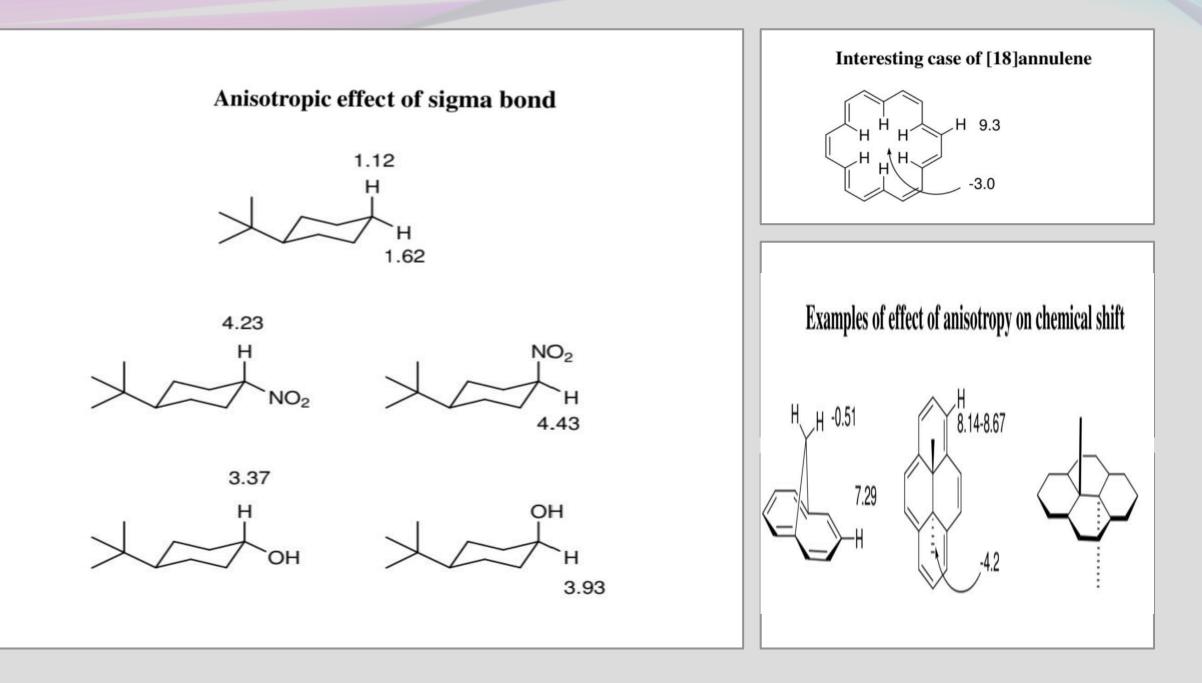
FACTORS AFFECTING CHEMICAL SHIFT

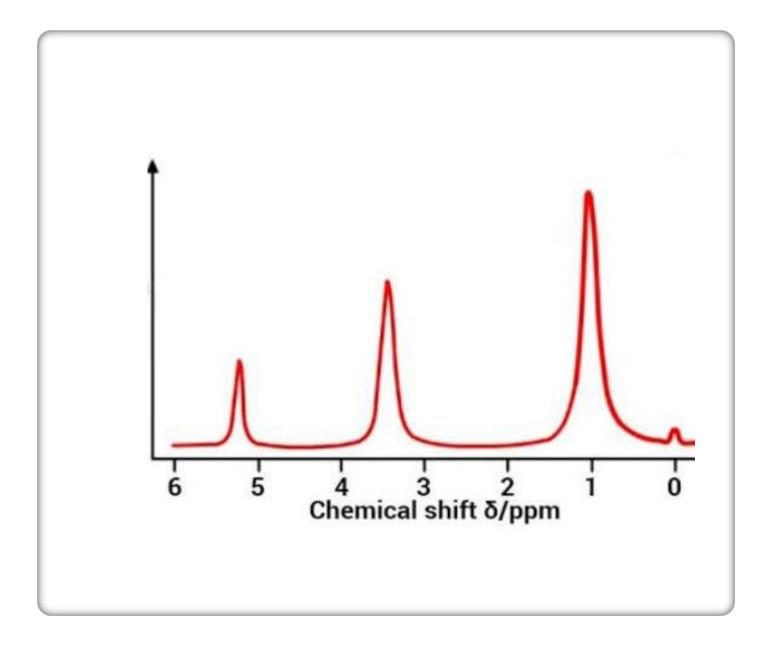
Electrone gativity, indactive and resonance effects

	TMS=0.0	CH ₄ =0.23	(all in ppm)			
MeI	2.2	2 MeC	ЭH	3.4	MeCl	3.1
MeBı	2.	6 MeF		4.3	CH_2Cl_2	5.2
MeCl	3.	1 MeN	NO_2	4.3	CHCl ₃	7.2
MeF	4.3	3	2		C	


ANISOTROPIC EFFECT

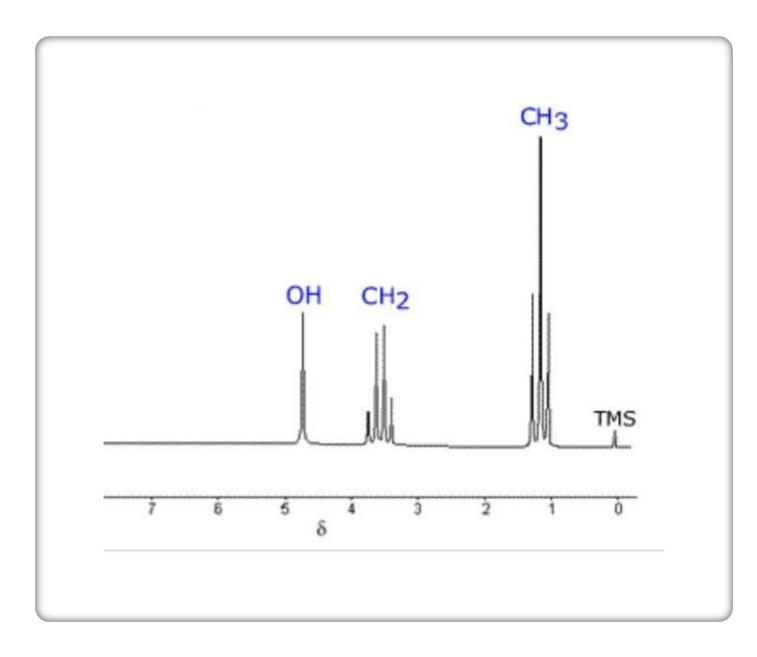
Spherical electron density – induced magnetic field will be uniform in space – isotropic effect


For example –s electron


Non-spherical electron density – induced magnetic field will be non-uniform in space – anisotropic

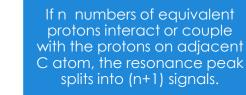
Example: π electron cloud of aromatic ring, C=C and C=O type – most common feature of organic molecules

DIAMAGNETIC ANISOTROPY



NMR SPECTROSCOPY FOR ETOH

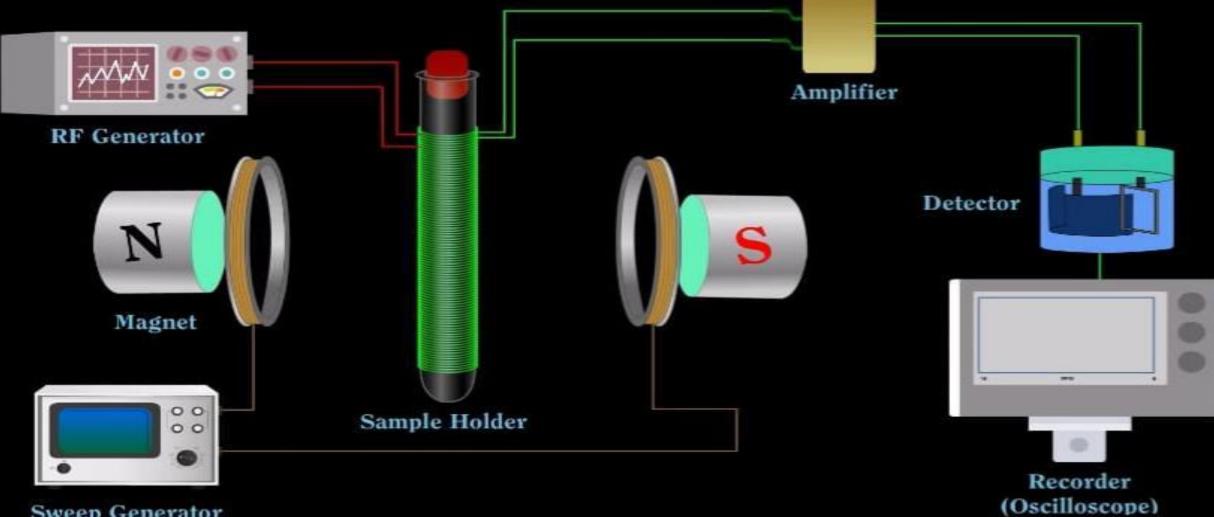
IN LOW RESOLUTION:



IN HIGH RESOLUTION:

SPIN-SPIN COUPLING (SPLITTING)

Protons of the same group do not interact among themselves.



The intensities are symmetric about the mid point of the group and relative intensities of the (n+1) peaks and it is determined by the Pascal's triangle.

THE PASCAL'S TRIANGLE

Singlet]	
Doublet		
Triplet	1 2 1	
Quartet	1 3 3 1	
Quintet	1 4 6 4 1	
Sextet	1 5 10 10 5 1	
Septet	1 6 15 20 15 6 1	

NMR INSTRUMENTATION

Sweep Generator

APPLICATION OF NMR SPECTROSCOPY

- ^IH NMR used for structural elucidation of organic and inorganic solids
- determines the physical and chemical properties of atoms
- Application in medicine....
- Anatomical imaging
- Measuring physiological function
- Flow measurement and angiography
- Tissue perfusion studies
- Tumours
- MRI

Application in medicine...

BRAIN

Distinguishing grey matter & white matter Imaging posterior fossae, brain stem, spinal cord Detect demyelinating lesions, tumour, haemorrhage, infarctions

ABDOMEN

Metabolic liver disease Focal areas of inflammation in chronic active hepatisis

KIDNEY

Distinguishing renal corta & medulla To evaluate transplanted kidney

PELVIS

Differentiate between benign prostatic hyperplasia & prostatic carcinoma

<u>REFERENCES</u>

- Organic spectroscopy by William Kemp
- Instrumental method of chemical analysis by Wchatwal
- Introduction to Spectroscopy by Donald L. Pavia
- Instrumental methods of analysis by Willard
- https://www.iitm.ac.in/
- https://www.slideshare.net/solairajananant/nmrspectroscopy-13887430
- http://sydney.edu.au/science/chemistry/facilities/nmr /nmr-applications.shtml
- https://www.google.com/url?sa=t&source=web&rct=j& url=https://www.wikipedia.org/&ved=2ahUKEwiZ1PLXs 9n_AhUoXWwGHWu_C04QFnoECBUQAQ&usg=AOvVa w3ay7vaEtH0yTTYdDmrvinX

CONCLUSION

The total project on NMR spectroscopy has influenced me a lot. In today's developing world gives us today a chance of stepping ourselves towards a better tomorrow. After the whole project, the utility and the fundamental function of NMR spectroscopy is quite vivid. So to have a better movement towards a better tomorrow, the progress of NMR spectroscopy is just needless to say.

Tithi Mondal B. Sc 6th Semester Chemistry Hons Examination-2023 Department of Chemistry University Registration Number: 202001004836 of 2020-21

University Roll Number: 200311000056

GUSHKARA MAHAVIDYALAYA

Dissertation Followed by Power Point Presentation

Course Code - DSE-4

Topic: Polymer Chemistry

Presented by Tithi Mondal

Contents of this template

1)Introduction
 2) Definition of Polymer
 3) Monomers
 4) What is Polymerization
 5) Classification of Polymer

- Classification based on source
- Classification based on structure
- Classification based on molecular forces
- Classification based on stereochemistry of Monomers
- Classification based on Monomers
- Copolymers
- Classification based on Synthesis

6)Kinetics of addition polymerization
7)Kinetics of condensation polymerization
8)Extent of reaction
9)Number average degree of Polymerization
10) Carothers Equation

11) Molecular weight of Polymer 12)PDI

- 13) Glass Transition Temperature
- 14) Free Volume Theory
- 15)Tg in terms of Free Volume
- 16) WLF Equation
- 17) Polymer Solvent
- 18) Application of Polymer
- 19) Synthetic Polymer a long term threat
- to Environment
- 20)Green Polymer Chemistry and Biobased Plastics- Dream vs Reality
- 21) Conclusion

Introduction

The term 'Polymer' in Greek means 'many parts'.

Polymers can be found all around us, from the strand of our DNA, which is a naturally occurring biopolymer, to polypropylene which is used throughout the world as plastic. Polymers can be naturally found in plants and animals or can be human- made. Different polymers have a number of unique physical and chemical properties, due to which they find usage in everyday life.

What is Polymer?

 Polymer is a high molecular weight compound containing many many repeating unit join in a regular fashion.

Monomers

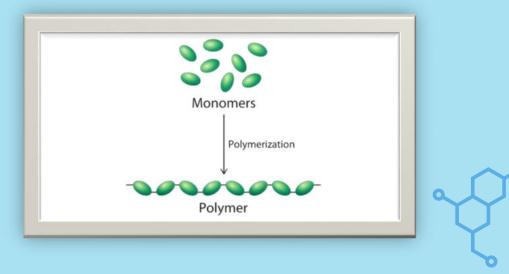
 Simple reactive species, contain some functional group, join together to form Polymer.

```
Example:

□ CH2=CH2 (Mono functional Momoner)

□ CH2-OH

| Bi functional Momomer


CH2-OH
```


Polymerization

 An overall process by which a Polymer is formed from its Monomer.

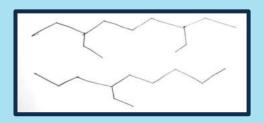
Classification of Polymer

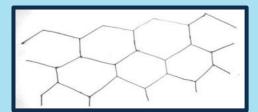
🗲 🗆 🗉 Classification Based on Source

A) <u>Natural Polymer:</u> Obtained from nature. Example - Rubber, Silk, Wool, Protein

B) <u>Semi Synthetic Polymer:</u> They are obtained from nature but undergo further chemical modification. Example - Cellulose Nitrate

C) <u>Synthetic Polymer:</u> Obtained by synthesis in a laboratory. Example - PVC, Nylon, Polyester.


Classification Based on Structure


A) <u>Linear Chain Polymer:</u> Contain one main chain, have no side chain . Example - PVC, Nylon

B) <u>Branched Chain Polymer:</u> Have some branches along with the main chain. Example - LDPE

C) <u>Crossed Linked Polymer:</u> Have Crossed linked between the main chain, So we get a 3D network structure. Example _DNovalac, Backelite

Classification Based on Molecular Forces

A) <u>Elastomer:</u> Very weak intermolecular attractive force between the Polymer Chain

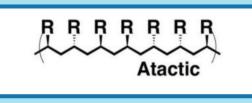
Example - Rubber

B) <u>Fibres:</u> Have Strong intermolecular attractive force.

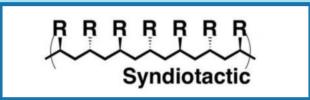
Example - Nylon 6,6 , Terilene

C) <u>Thermoplastic:</u> Intermolecular attractive force is in between Elastomer and Fibres.

Example - PVC



Classification Based on Stereochemistry of Monomer


A) <u>Isotactic Polymers:</u> The side chain present in same order with the main chain.

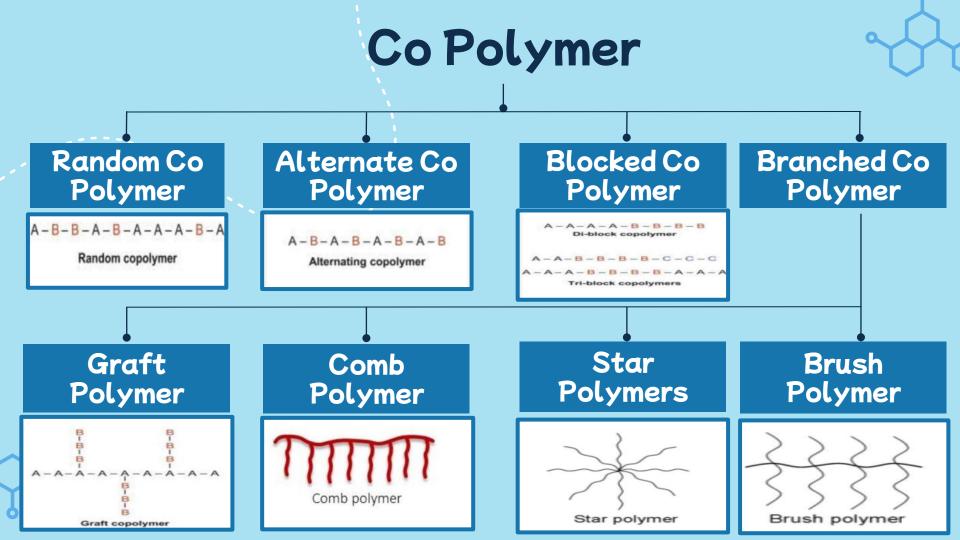
Isotactic

C) Atactic Polymer: Follow no order.

B) <u>Syndiotactic Polymer</u>: Side chain follow alternative order.

Classification Based on Monomer

A) <u>Homo Polymer:</u> Obtained from one type of Monomers. Example - PVC

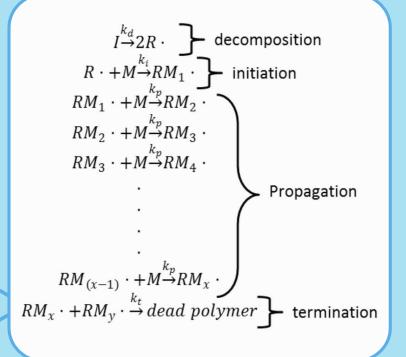


B) <u>Co- Polymer:</u> Obtained from two different monomer. Example - Nylon 6,6

Classification based on Synthesis

A) <u>Addition Polymer:</u> Obtained from one type of monomer by addition reaction.

Example: Ethylene --> Polyethylene


B) <u>Condensation Polymer</u>: Obtained from two different types of monomer by Condensation Reaction.

nHO
$$-\overset{O}{C} - (CH_2)_4 - \overset{O}{C} - OH + nH_2N - (CH_2)_6 - NH_2 \longrightarrow$$

Adipic acid Hexamethylene diamine

$$\begin{bmatrix} O & O \\ -C - (CH_2)_4 - \overset{O}{C} - NH(CH_2)_6 - NH \\ - & O \\ -C - (CH_2)_4 - \overset{O}{C} - NH(CH_2)_6 - NH \\ - & O \\ -$$

Kinetics of Addition Polymerization

It follows four step:

Kinetics of Condensation Polymerization

Mechanism :

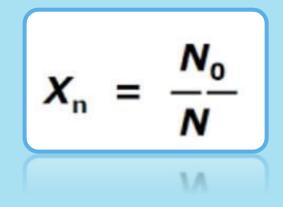
HO-(CH₂)_m-OH + HOOC-(CH₂)_n-COOH

$$\downarrow$$
-H₂O O
HO-(CH₂)_m-O-C-(CH₂)_n-COOH
 \checkmark COOH will attack at this side \sim -OH will attack at this side

diol + dicarboxylic acid \rightarrow polyester + H₂O $HO-(CH_2)_m-OH + HOOC-(CH_2)_n-COOH \rightarrow$ $HO-(CH_2)_m-OOC-(CH_2)_n-COOH + H_2O$ Rate = $\frac{d[\text{polyester}]}{dt} = -\frac{d[\text{diol}]}{dt} = -\frac{d[\text{dicarboxylic acid}]}{dt}$ Then Rate $(R) = -\frac{d[C]}{dt} = k[C]^2$ where k is rate constant. On rearrangement, $-\frac{d[C]}{[C]^2} = kdt$ On integration, $\int_{C_0}^{C_t} -\frac{d[C]}{[C]^2} = \int_{t=0}^{t=t} k dt$ $\frac{1}{[C]_t} - \frac{1}{[C]_0} = kt$

Extent of reaction

Extent of Reaction (P):


 $P = \frac{\text{Number of Monomer unit take part in polymer formation}}{\text{Total number of Monomer Unit taken initially}}$

$$p = \frac{N_0 - N_t}{N_0} = \frac{N_0}{N_0} - \frac{N_t}{N_0} = 1 - \frac{N_t}{N_0}$$

Number average degree of Polymerization

 ${}_{n} = \frac{\text{Total number of monomer taken initially}}{\text{Number of monomer present after time t.}}$

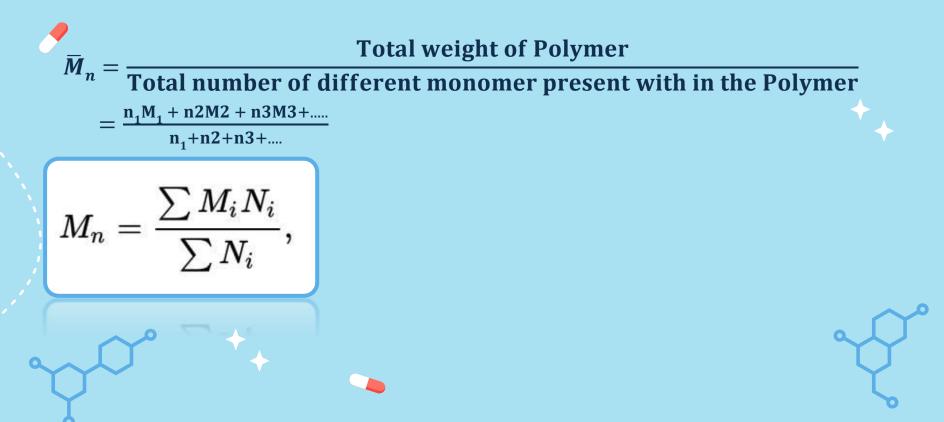
Carothers Equation

By simplifying the equation
$$p = \frac{N_0 - N_t}{N_0} = \frac{N_0}{N_0} - \frac{N_t}{N_0} = 1 - \frac{N_t}{N_0}$$

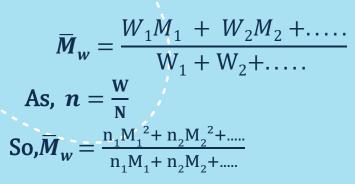
$$\frac{N_t}{N_0} = 1 - p \text{ or, } \frac{N_0}{N_t} = \frac{1}{1-p}$$

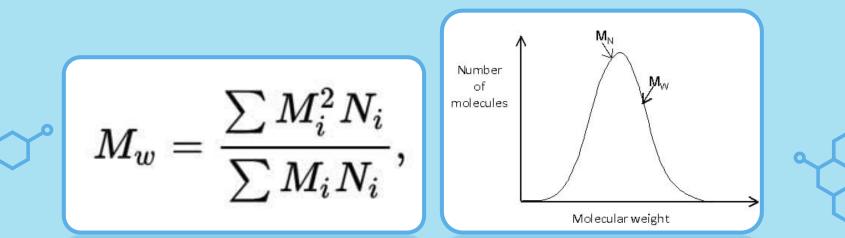
Again the number-average value of the degree of polymerization (\overline{X}_n) can be written as

$$\overline{X}_n = \frac{N_0}{N_t} = \frac{1}{1-p}$$
 or, $\overline{X}_n = \frac{1}{1-p}$


This equation is called the Carothers equation.

This equation is called the Carothers equation.


Molecular Weight of Polymer



A) Number average Molecular Weight:

B) Weight average molecular weight:

Poly Dispersity Index

 $PDI = \frac{\overline{M}_w}{\overline{M}_n}$

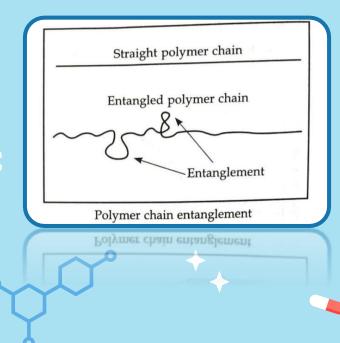
Generally, $M_w > M_n$

So, PDI > **1**

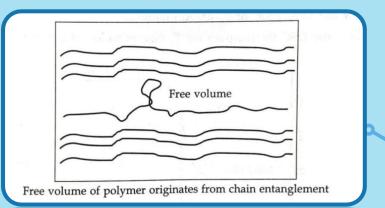
If $M_n = M_w$, then PDI = 1 (Homogeneous Polymer)

If M_w>M_n , PDI>1 (Heterogeneous Polymer)

Glass Transition Temperature or Tg


 The temperature below which a polymer is hard and above which it is soft.

Gilassy State (Hond)	Rubben like Polymen (morre florvikle) (Soft)	viscous-fluid state Polymer melt (fluid)
	Tg Tampo	n.


Free Volume Theory

 Sometimes during polymerization, some chain are entangled, due to this
 entanglement, the volume of polymer increase.

V=V₀+V_f [V= Volume Occupied by the polymer
 V_f= Free volume due presence of entanglement
 V₀= Volume occupied by the Polymer, due to their existence]

So the excess volume occupies by the Polymer called Free Volume.

Tg in terms of Free Volume

The presence of entanglement, result to more free volume. The Polymer chain can easily move. So the flexibility or mobility depends upon free volume.

As T increases flexibility increases, Free Volume also increases

By Decreasing T, at a certain temperature , free volume suddenly decreases. So, flexible Polymer converted to hard, Rigid Polymer. This temperature is called Tg.

WLF Equation

Scientist Williams, Landle and
 Ferry proposed an equation how
 viscoelastic property depend upon
 Temp.

It is Valid for Newtonian fluid whose molecular weight is very low, but for polymer, due to High molecular weight This equation is not applicable. $\eta = Ae^{\frac{L}{RT}}$, where η , A, E, R and T are viscosity, material constant, activation energy, gas constant and the absolute temperature respectively. By taking log the equation becomes $\log \eta = \log A + \frac{E}{RT}$

Doolittle equation for entangled polymer systems $\log \eta = \log A + B\left(\frac{V_0}{V_f}\right)$

(where *B* is constant, V_0 and V_f are the occupied volume and free volume (respectively.

Polymer Solvent

□ A) <u>Good Solvent:</u> Polymer Solvent interaction is much stronger compare to Solvent-solvent interaction.

 Δ H=(-)ve ,. Δ S= (+)ve

B) Bad Solvent: Polymer-Solvent interaction is much weaker.

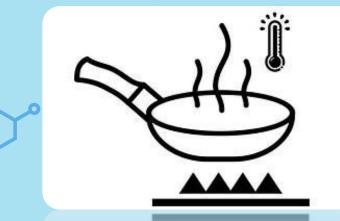
 $\Delta H=(+)ve. \Delta S=(-)ve$

Application

- Polythene: A widely used and common item, plastic bags and containers are in fact a polymer made of polythene.
- LDPE: Low-density polythene is used for making various parts of machines, pipes, tubes, plastic bottles.
 HDPE: Due to its high density and crystalline structure, it is used for food packaging, fuel tanks wiring and cable
- PVC: The most common use of polyvinyl chloride is in the electric wires and other insulated equipment that is coated in PVC. They are also used in water pipes that provide corrosion-free applications.
- Nylon fibers are used for making water- resistant clothing like raincoats and umbrellas. They are also used in carpets, parachutes, ropes, and textiles.
- Rubber: Rubber is commonly used for making tires, though is also important for making machine parts, lubricants, gloves, and so on.
- Teflon: Teflon is most commonly seen in kitchen appliances wherein a Teflon coat is provided on the surface of pans and pots to make them "non-stick."

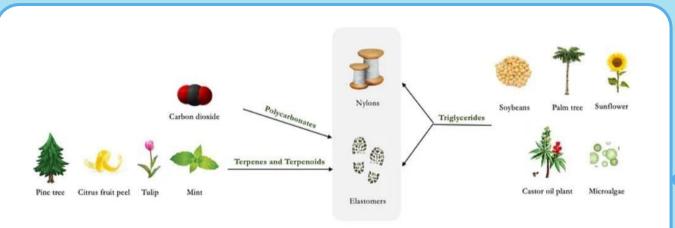
Polypropylene: It is used for automotive industry, furniture, laboratory apparatus, textiles.

Synthetic Polymer-A long term threat to Environment

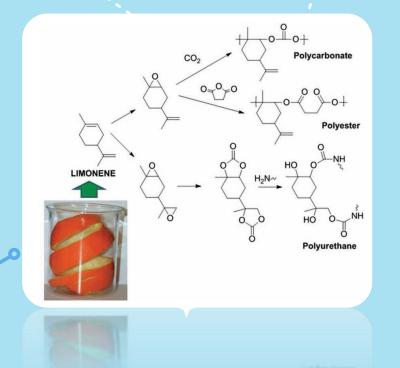

Synthetic Polymers are often dispose of in landfill where they will remain for centuries into the future, slowly leaching harmful toxins into soil as time passes.

According to the Clean Air Council Organisation, Americans alone use 102.1 billion plastic bags - a synthetic polymer - each year. Less than 1% of these bags are recycled.

- Oceans provide a home for hundreds of thousands of species on Earth, and it is essential for human life. Unfortunately, while many species depend on the ocean for its ability to create food and oxygen, human activities negatively impact the ocean and its wildlife.
 - Synthetic polymers also cause huge health risks, such as birth deformities, reproductive disorder, liver problems, skin disorders, damage to immune system, cancer, respiratory diseases.


With the overuse and overheating of non-stick pans, the organic chemicals can be mixed with food and air.

Green Polymer Chemistry and Biobased Palstic-Dreams Vs Reality


Biodegradable or Biobased plastics are derived from natural resources like Corn,
 Starch, Biomass and Food Waste. Therefore, bioplastics are relatively less harmful to the environment.

The first bioplastic were made by using traditional agricultural and renewable resources such as cellulose, Casein and Soybeans

Bio Based Polymer from Orange Peel

 It is proven that the orange peel derived biocomposite film is more biodegradable.

Use of Eggshell as biofiller

 The biofiller obtained from egg shell as a source of calcium carbonate could be successfully used to modify Polymer Materials.

The Egg Shell in Epoxy Resin has functioned as a flame retardant and smoke suppression modifier.

Expectation

- Reducing demand for non-renewable fossil raw materials.
- Low greenhouse gas emission.
- Usage of agricultural and forestry wastes to a full degree.
- **Biodegradation**.
- No toxicity and no health hazards.

Low price.

Vs

Reality

- Increasing demand for renewable raw materials. Competition with food production.
- Potential growth of greenhouse gas emission.
- Partial use of agricultural and forestry wastes **
- Biodegradation is time-consuming and leaves traces *
- Potential health hazards and toxicity of micro- and nanoparticles releasing during the biodegradation.
 - **Still remain too expensive.**

 It is no exaggeration to say that the concept of materials coming from nature is very attractive to the consumers and to the industry.

The future looks bright if we all move someday to a world where plastics will be biodegradable and made without fossil resources. Potentially bioplastics could become an ecofriendly and economically successful new group of materials with manifold applications and beneficial properties.

- □ F. W. Billmeyer, Textbook of Polymer Science, 3rd Edition
- https://medium.com/@stonev/bioplastics-dreams-and-reality-87cd86e85825
- https://sciencing.com/environmental-problems-caused-by-syntheticpolymers-12732046.html
- https://doi.org/10.1016/j.jmrt.2021.09.016

https://www.researchgate.net/figure/Dream-left-and-reality-right-of-aclosed-carbon-loop-in-bioplastic-economy_fig1_360952953

Acknowledgement

 I would like to express my sincere gratitude to my advisor Dr.Bholanath Sarkar,Dr. Pialee Roy, Diptiman De and Sk Saifuddin, Department of Chemistry, Guskara Mahavidyalaya for their invaluable expertise, guidance, and constant encouragement throughout the process. Their profound knowledge and passion for polymer chemistry have been instrumental in shaping this presentation.

I am also thankful to all faculty members and support staff of Chemistry Department. Guskara Mahavidyalaya, for constant help.

I would also like to express my appreciation to my friends for their assistance in gathering and organizing the necessary information for this presentation.

Tithi Mondal

